Citation: Yu Long, Bing Yuan, Jiantai Ma. Epoxidation of alkenes efficiently catalyzed by Mo salen supported on surface-modified halloysite nanotubes[J]. Chinese Journal of Catalysis, ;2015, 36(3): 348-354. doi: 10.1016/S1872-2067(14)60244-8 shu

Epoxidation of alkenes efficiently catalyzed by Mo salen supported on surface-modified halloysite nanotubes

  • Corresponding author: Jiantai Ma, 
  • Received Date: 13 September 2014
    Available Online: 3 November 2014

  • Halloysite-nanotube-supported Mo salen (HNTs-Mo-SL) catalysts were successfully prepared using a facile chemical surface modification and self-assembly method. The morphologies, sizes, structure, and dispersion of the as-prepared catalysts were investigated by transmission electron microscopy, X-ray diffraction, and Fourier-transform infrared, inductively coupled plasma, and X-ray photoelectron spectroscopy, which confirmed the existence of the Mo salen structure and successful synthesis of the HNTs-Mo-SL catalyst. The immobilized catalyst was found to be highly reactive in the epoxidation of a wide range of alkenes, including linear, cyclic, and aromatic alkenes. The immobilized catalyst exhibited a higher catalytic activity for alkene epoxidation than homogeneous Mo. In contrast experiments, it was determined that the salen structure played an important role in immobilizing MoO(O2)2(DMF)2 and improving the conversion and efficiency of alkene epoxidation, which could not be obtained using other ligands, such as the N atom as a single ligand. Furthermore, the bonding between Mo and the salen ligands and the possible mechanism of alkene epoxidation catalyzed by the catalyst were determined. The catalyst could be reused several times without significant loss of catalytic activity. Given that halloysite nanotubes are cheap and easy to obtain, this catalyst offers a novel alternative for the rational design of catalysts with desired features.
  • 加载中
    1. [1]

      [1] Lane B S, Burgess K. Chem Rev, 2003, 103: 2457

    2. [2]

      [2] Joergensen K A. Chem Rev, 1989, 89: 431

    3. [3]

      [3] Zou X C, Shi K Y, Wang C. Chin J Catal(邹晓川, 石开云, 王存. 催化学报), 2014, 35: 1446

    4. [4]

      [4] Qi B, Lu X H, Fang S Y, Lei J, Dong Y L, Zhou D, Xia Q H. J Mol Catal A, 2011, 334: 44

    5. [5]

      [5] Xu G, Xia Q H, Lu X H, Zhang Q, Zhan H J. J Mol Catal A, 2007, 266: 180

    6. [6]

      [6] Calvente R M, Campos-Martin J M, Fierro J L G. CatalCommun, 2002, 3: 247

    7. [7]

      [7] Thiel W R. J Mol Catal A, 1997, 117: 449

    8. [8]

      [8] Bakala P C, Briot E, Salles L, Brégeault J M. Appl Catal A, 2006, 300: 91

    9. [9]

      [9] Jarupatrakorn J, Coles M P, Tilley T D. Chem Mater, 2005, 17: 1818

    10. [10]

      [10] Wang G, Feng L S, Luck R L, Evans D G, Wang Z Q, Duan X. J Mol Catal A, 2005, 241: 8

    11. [11]

      [11] Yuan C Y, Zhang Y, Chen J. Chin J Catal(袁程远, 张妍, 陈静. 催化学报), 2011, 32: 1166

    12. [12]

      [12] Tangestaninejad S, Moghadam M, Mirkhani V, Mohammadpoor- Baltork I, Ghani K. InorgChem Commun, 2008, 11: 270

    13. [13]

      [13] Bruno S M, Fernandes J A, Martins L S, Gonçalves I S, Pillinger M, Ribeiro-Claro P, Rocha J, Valente A A. CatalToday, 2006, 114: 263

    14. [14]

      [14] Zhu H Y, Zhang Y, Zhou D G, Guan J, Bao X H. Chin J Catal(朱洪元, 张元, 周丹红, 关静, 包信和. 催化学报), 2007, 28: 180

    15. [15]

      [15] Sakthivel A, Zhao J, Raudaschl-Sieber G, Hanzlik M, Chiang A S T, Kühn F E. Appl Catal A, 2005, 281: 267

    16. [16]

      [16] Jia M J, Seifert A, Thiel W R. Chem Mater, 2003, 15: 2174

    17. [17]

      [17] Xing S Y, Zhou D H, Cao L, Li X. Chin J Catal(邢双英, 周丹红, 曹亮, 李新. 催化学报), 2010, 31: 415

    18. [18]

      [18] Sakthivel A, Zhao J, Kühn F E. Catal Lett, 2005, 102: 115

    19. [19]

      [19] MoghadamM, Tangestaninejad S, Mirkhani V, Mohammadpoor- Baltork I, Mirbagheri N S. J Organomet Chem, 2010, 695: 2014

    20. [20]

      [20] Moghadam M, Tangestaninejad S, Mirkhani V, Mohammadpoor- Baltork I, Mirjafari A, Mirbagheria N S. J Mol Catal A, 2010, 329: 44

    21. [21]

      [21] Beall G W, Sowersby D S, Roberts R D, Robson M H, Lewis L K. Biomacromolecules, 2009, 10: 105

    22. [22]

      [22] Shamsi M H, Geckeler K E. Nanotechnology, 2008, 19: 075604

    23. [23]

      [23] Hirano Y, Miura Y F, Sugi M, Ishii T. Colloids Surf A, 2002, 198-200: 37

    24. [24]

      [24] Yah W O, Xu H, Soejima H, Ma W, Lvov Y, Takahara A. J Am Chem Soc, 2012, 134: 12134

    25. [25]

      [25] Yao Y, Chaubey G S, Wiley J B. J Am Chem Soc, 2012, 134: 2450

    26. [26]

      [26] Abdullayev E, Joshi A, Wei W B, Zhao Y F, Lvov Y. ACS Nano, 2012, 6: 7216

    27. [27]

      [27] Islam M R, Bach L G, Lim K T. Appl Surf Sci, 2013, 276: 298

    28. [28]

      [28] Shchukin D G, Lamaka S V, Yasakau K A, Zheludkevich M L, Ferreira M G S, Möhwald H. J Phys Chem C, 2008, 112: 958

    29. [29]

      [29] Ranganatha S, Venkatesha T V, Vathsala K. Appl Surf Sci, 2012, 263: 149

    30. [30]

      [30] Fix D, Andreeva D V, Lvov Y M, Shchukin D G, Möhwald H. Adv Funct Mater, 2009, 19: 1720

    31. [31]

      [31] Shchukin D G, Sukhorukov G B, Price R R, Lvov Y M. Small, 2005, 1: 510

    32. [32]

      [32] Wan C Y, Li M, Bai X, Zhang Y. J Phys Chem C, 2009, 113: 16238

    33. [33]

      [33] Jiang J Q, Zhang Y W, Yan L W, Jiang P K. Appl Surf Sci, 2012, 258: 6637

    34. [34]

      [34] Pan J M, Wang B, Dai J D, Dai X H, Hang H, Ou H X, Yan Y S. J Mater Chem, 2012, 22: 3360

    35. [35]

      [35] Wang L, Chen J L, Ge L, Zhu Z H, Rudolph V. Energy Fuels, 2011, 25: 3408

    36. [36]

      [36] Wang R J, Jiang G H, Ding Y W, Wang Y, Sun X K, Wang X H, Chen W X. ACS Appl Mater Interfaces, 2011, 3: 4154

    37. [37]

      [37] Mimoun H, de Roch I S, Sajus L. Bull Soc Chim France, 1969: 1481

    38. [38]

      [38] Ding H J, Wang G, Yang M, Luan Y, Wang Y N, Yao X X. J Mol Catal A, 2009, 308: 25

    39. [39]

      [39] Masteri-Farahani M. J Mol Catal A, 2010, 316: 45

  • 加载中
    1. [1]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    2. [2]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    3. [3]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    4. [4]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    5. [5]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    6. [6]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    7. [7]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    9. [9]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    10. [10]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    11. [11]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    12. [12]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    13. [13]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    14. [14]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    16. [16]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    17. [17]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    18. [18]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

Metrics
  • PDF Downloads(193)
  • Abstract views(975)
  • HTML views(87)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return