Citation: Weili Li, Qingjie Ge. Oxide-supported Aun(SR)m nanoclusters for CO oxidation[J]. Chinese Journal of Catalysis, ;2015, 36(2): 135-138. doi: 10.1016/S1872-2067(14)60233-3 shu

Oxide-supported Aun(SR)m nanoclusters for CO oxidation

  • Corresponding author: Qingjie Ge, 
  • Received Date: 7 July 2014

  • 加载中
    1. [1]

      [1] Haruta M, Yamada N, Kobayashi T, Iijima S. J Catal, 1989, 115: 301

    2. [2]

      [2] Haruta M. Angew Chem Int Ed, 2014, 53: 52

    3. [3]

      [3] Li W J, Wang A Q, Yang X F, Huang Y Q, Zhang T. Chem Commun, 2012, 48: 9183

    4. [4]

      [4] Liu X Y, Mou C Y, Lee S, li Y N, Secrest J, Jang B W-L. J Catal, 2012, 285: 152

    5. [5]

      [5] Si R, Flytzani-Stephanopoulos M. Angew Chem Int Ed, 2008, 47: 2884

    6. [6]

      [6] Liu X Y, Wang A Q, Li L, Zhang T, Mou C Y, Lee J F. J Catal, 2011, 278: 288

    7. [7]

      [7] Ta N, Liu J Y, Shen W J. Chin J Catal (塔娜, 刘景月, 申文杰. 催化学报), 2013, 34: 838

    8. [8]

      [8] Rombi E, Cutrufello M G, Cannas C, Occhiuzzi M, Onida B, Ferino I. Phys Chem Chem Phys, 2012, 14: 6889

    9. [9]

      [9] Qi J, Chen J, Li G D, Li S X, Gao Y, Tang Z Y. Energy Environ Sci, 2012, 5: 8937

    10. [10]

      [10] Guzman J, Carrettin S, Corma A. J Am Chem Soc, 2005, 127: 3286

    11. [11]

      [11] Akita T, Lu P, Ichikawa S, Tanaka K, Haruta M. Surf Interface Anal, 2001, 31: 73

    12. [12]

      [12] Brust M, Walker M, Bethell D, Schiffrin D J, Whyman R. J Chem Soc, Chem Commun, 1994: 801

    13. [13]

      [13] Chen J, Zhang Q F, Boraccorso T A, Williard P G, Wang L S. J Am Chem Soc, 2014, 136: 92

    14. [14]

      [14] Yuan X, Zhang B, Luo Z T, Yao Q F, Leong D T, Yan N, Xie J P. Angew Chem Int Ed, 2014, 53: 4623

    15. [15]

      [15] Negishi Y, Tsukuda T. J Am Chem Soc, 2003, 125: 4046

    16. [16]

      [16] Lee D, Donkers R L, Wang G L, Harper A S, Murray R W. J Am Chem Soc, 2004, 126: 6193

    17. [17]

      [17] Akola J, Walter M, Whetten R L, Häkkinen H, Grönbeck H. J Am Chem Soc, 2008, 130: 3756

    18. [18]

      [18] Zhu M Z, Lanni E, Garg N, Bier M E, Jin R C. J Am Chem Soc, 2008, 130: 1138

    19. [19]

      [19] Qian H F, Zhu M Z, Andersen U N, Jin R C. J Phys Chem A, 2009, 113: 4281

    20. [20]

      [20] Qian H F, Jin R C. Nano Lett, 2009, 9: 4083

    21. [21]

      [21] Menard L D, Xu F T, Nuzzo R G, Yang J C. J Catal, 2006, 243: 64

    22. [22]

      [22] Hickey N, Larochette P A, Gentilini C, Sordelli L, Olivi L, Polizzi S, Montini T, Fornasiero P, Pasquato L, Graziani M. Chem Mater, 2007, 19: 650

    23. [23]

      [23] Korkosz R J, Gilbertson J D, Prasifka K S, Chandler B D. Catal Today, 2007, 122: 370

    24. [24]

      [24] Long C G, Gilbertson J D, Vijayaraghavan G, Stevenson K J, Pursell C J, Chandler B D. J Am Chem Soc, 2008, 130: 10103

    25. [25]

      [25] Gaur S, Miller J T, Stellwagen D, Sanampudi A, Kumar C S S R, Spivey J J. Phys Chem Chem Phys, 2012, 14: 1627

    26. [26]

      [26] Gaur S, Wu H Y, Stanley G G, More K, Kumar C S S R, Spivey J J. Catal Today, 2013, 208: 72

    27. [27]

      [27] Ma G C, Binder A, Chi M F, Liu C, Jin R C, Jiang D E, Fan J, Dai S. Chem Commun, 2012, 48: 11413

    28. [28]

      [28] Zhu Y, Qian H F, Das A, Jin R C. Chin J Catal (催化学报), 2011, 32: 1149

    29. [29]

      [29] Zhu Y, Qian H F, Drake B A, Jin R C. Angew Chem Int Ed, 2010, 49:1295

    30. [30]

      [30] Tai Y, Yamaguchi W, Okada M, Ohashi F, Shimizu K I, Satsuma A, Tajiri K, Kageyama H. J Catal, 2010, 270: 234

    31. [31]

      [31] Lopez-Acevedo O, Kacprzak K A, Akola J, Häkkinen H. Nat Chem, 2010, 2: 329

    32. [32]

      [32] Nie X T, Qian H F, Ge Q J, Xu H Y, Jin R C. ACS Nano, 2012, 6: 6014

    33. [33]

      [33] Nie X T, Zeng C J, Ma X G, Qian H F, Ge Q J, Xu H Y, Jin R C. Nanoscale, 2013, 5: 5912

    34. [34]

      [34] Wu Z L, Jiang D E, Mann A K P, Mullins D R, Qiao Z A, Allard L F, Zeng C J, Jin R C, Overbury S H. J Am Chem Soc, 2014, 136: 6111

  • 加载中
    1. [1]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    2. [2]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

    3. [3]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    4. [4]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    5. [5]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    6. [6]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    7. [7]

      Zhenjie YangChenyang HuXuan PangXuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340

    8. [8]

      Meng WangYan ZhangYunbo YuWenpo ShanHong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928

    9. [9]

      Jumei ZhangZiheng ZhangGang LiHongjin QiaoHua XieLing Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278

    10. [10]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    11. [11]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    12. [12]

      Yong-Fang Shi Sheng-Hua Zhou Zuju Ma Xin-Tao Wu Hua Lin Qi-Long Zhu . From [Ba3S][GeS4] to [Ba3CO3][MS4] (M = Ge, Sn): Enhancing optical anisotropy in IR birefringent crystals via functional group implantation. Chinese Journal of Structural Chemistry, 2025, 44(1): 100455-100455. doi: 10.1016/j.cjsc.2024.100455

    13. [13]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    14. [14]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    15. [15]

      Wenya Jiang Jianyu Wei Kuan-Guan Liu . Atomically precise superatomic silver nanoclusters stabilized by O-donor ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100371-100371. doi: 10.1016/j.cjsc.2024.100371

    16. [16]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    17. [17]

      Rakesh Kumar Gupta Zhi Wang Di Sun . Shining bright: Revolutionary near-unity NIR phosphorescent metal nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(11): 100417-100417. doi: 10.1016/j.cjsc.2024.100417

    18. [18]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    19. [19]

      Chuyu HuangZhishan LiuLinping ZhaoZuxiao ChenRongrong ZhengXiaona RaoYuxuan WeiXin ChenShiying Li . Metal-coordinated oxidative stress amplifier to suppress tumor growth combined with M2 macrophage elimination. Chinese Chemical Letters, 2024, 35(12): 109696-. doi: 10.1016/j.cclet.2024.109696

    20. [20]

      Yunyan LiZimin CaiZhicheng WangSifeng ZhuWendian LiuCheng Wang . Construction of biomimetic hybrid nanovesicles based on M1 macrophage-derived exosomes for therapy of cancer. Chinese Chemical Letters, 2025, 36(4): 109942-. doi: 10.1016/j.cclet.2024.109942

Metrics
  • PDF Downloads(503)
  • Abstract views(1582)
  • HTML views(84)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return