Citation: Tao Chang, Xiaorui Gao, Li Bian, Xiying Fu, Mingxia Yuan, Huanwang Jing. Coupling of epoxides and carbon dioxide catalyzed by Brönsted acid ionic liquids[J]. Chinese Journal of Catalysis, ;2015, 36(3): 408-413. doi: 10.1016/S1872-2067(14)60227-8 shu

Coupling of epoxides and carbon dioxide catalyzed by Brönsted acid ionic liquids

  • Corresponding author: Huanwang Jing, 
  • Received Date: 11 August 2014
    Available Online: 15 September 2014

    Fund Project: 河北省自然科学基金(B2012402001) (B2012402001) 国家自然科学基金(51202054, 21173106). (51202054, 21173106)

  • A series of Brönsted acid ionic liquids (BAILs) containing a long chain Brönsted acid site in the cationic part and a Lewis basic site in the anionic part were designed, synthesized, and used as catalyst for the coupling of epoxides and carbon dioxide to cyclic carbonates without a co-catalyst or co-solvent. The effects of catalyst structure and other parameters on the catalytic performance were investigated. The long chain 2-(N,N-dimethyldodecylammonium) acetic acid bromide ([(CH2COOH)DMDA]Br) showed high catalytic activity and good reusability. This protocol was expanded to various epoxides, which gave the corresponding cyclic carbonates in good yields. The acidity of the catalyst influenced its catalytic activity.
  • 加载中
    1. [1]

      [1] Markewitz P, Kuckshinrichs W, Leitner W, Linssen J, Zapp P, Bongartz R, Schreiber A, Müller T E. Energy Environ Sci, 2012, 5: 7281

    2. [2]

      [2] Li L, Zhao N, Wei W, Sun Y H. Fuel, 2013, 108: 112

    3. [3]

      [3] Li H, Bhadury P S, Song B A, Yang S. RSC Adv, 2012, 2: 12525

    4. [4]

      [4] Fan Q J, Liu J H, Chen J, Xia C G. Chin J Catal(樊启佳, 刘建华, 陈静, 夏春谷. 催化学报), 2012, 33: 1435

    5. [5]

      [5] Castro-Osma J A, Lara-Sánchez A, North M, Otero A, Villuendas P. Catal Sci Technol, 2012, 2: 1021

    6. [6]

      [6] Lu X B, Darensbourg D J. Chem Soc Rev, 2012, 41: 1462

    7. [7]

      [7] Ren W M, Wu G P, Lin F, Jiang J Y, Liu C, Luo Y, Lu X B. Chem Sci, 2012, 3: 2094

    8. [8]

      [8] Beattie C, North M. Chem Eur J, 2014, 20: 8182

    9. [9]

      [9] Xie Y, Wang T T, Yang R X, Huang N Y, Zou K, Deng W Q. ChemSusChem, 2014, 7: 2110

    10. [10]

      [10] Iksi S, Aghmiz A, Rivas R, González M D, Cuesta-Aluja L, Castilla J, Orejón A, Guemmout F E, Masdeu-Bultó A M. J Mol Catal A, 2014, 383-384: 143

    11. [11]

      [11] Li B, Zhang L L, Song Y Y, Bai D S, Jing H W. J Mol Catal A, 2012, 363-364: 26

    12. [12]

      [12] Bai D S, Duan S H, Hai L, Jing H W. ChemCatChem, 2012, 4: 1752

    13. [13]

      [13] Ema T, Miyazaki Y, Koyama S, Yano Y, Sakai T. Chem Commun, 2012, 48: 4489

    14. [14]

      [14] Wei R J, Zhang X H, Du B Y, Fan Z Q, Qi G R. J Mol Catal A, 2013, 379: 38

    15. [15]

      [15] Tharun J, Hwang Y, Roshan R, Ahn S, Kathalikkattil A C, Park D W. Catal Sci Technol, 2012, 2: 1674

    16. [16]

      [16] Li C Y, Wu C R, Liu Y C, Ko B T. Chem Commun, 2012, 48: 9628

    17. [17]

      [17] Roeser J, Kailasam K, Thomas A. ChemSusChem, 2012, 5: 1793

    18. [18]

      [18] Dai W L, Jin B, Luo S L, Luo X B, Tu X M, Au C T. Catal Today, 2014, 233: 92

    19. [19]

      [19] Chen J X, Jin B, Dai W L, Deng S L, Cao L R, Cao Z J, Luo S L, Luo X B, Tu X M, Au C T. Appl Catal A, 2014, 484: 26

    20. [20]

      [20] Yu T, Weiss R G. Green Chem, 2012, 14: 209

    21. [21]

      [21] Gao J, Song Q W, He L N, Liu C, Yang Z Z, Han X, Li X D, Song Q C. Tetrahedron, 2012, 68: 3835

    22. [22]

      [22] He Q, O'Brien J W, Kitselman K A, Tompkins L E, Curtis G C T, Kerton F M. Catal Sci Technol, 2014, 4: 1513

    23. [23]

      [23] Ghazali-Esfahani S, Song H B, Pâunescu E, Bobbink F D, Liu H Z, Fei Z F, Laurenczy G, Bagherzadeh M, Yan N, Dyson P J. Green Chem, 2013, 15: 1584

    24. [24]

      [24] Dai W L, Jin B, Luo S L, Luo X B, Tu X M, Au C T. J Mol Catal A, 2013, 378: 326

    25. [25]

      [25] Song Q W, He L N, Wang J Q, Yasuda H, Sakakura T. Green Chem, 2013, 15: 110

    26. [26]

      [26] Tharun J, Kim D W, Roshan R, Hwang Y, Park D W. Catal Commun, 2013, 31: 62

    27. [27]

      [27] Wong W L, Lee L Y S, Ho K P, Zhou Z Y, Fan T, Lin Z Y, Wong K Y. Appl Catal A, 2014, 472: 160

    28. [28]

      [28] Wang F, Xu C Z, Li Z, Xia C G, Chen J. J Mol Catal A, 2014, 385: 133

    29. [29]

      [29] Dai W L, Jin B, Luo S L, Luo X B, Tu X M, Au C T. Appl Catal A, 2014, 470: 183

    30. [30]

      [30] Xiao L F, Sun D, Yue C T, Wu W. J CO2 Utilization, 2014, 6: 1

    31. [31]

      [31] Dai W L, Jin B, Luo S L, Yin S F, Luo X B, Au C T. J CO2 Utilization, 2013, 3-4: 7

    32. [32]

      [32] Sun J, Wang J Q, Cheng W G, Zhang J X, Li X H, Zhang S J, She Y B. Green Chem, 2012, 14: 654

    33. [33]

      [33] Watile R A, Deshmukh K M, Dhake K P, Bhanage B M. Catal Sci Technol,2012, 2: 1051

    34. [34]

      [34] Qu J, Cao C Y, Dou Z F, Liu H, Yu Y, Li P, Song W G. ChemSusChem, 2012, 5: 652

    35. [35]

      [35] Xiao L F, Lü D W, Su D, Wu W, Li H F. J Clean Prod, 2014, 67: 285

    36. [36]

      [36] Han L N, Choi S J, Park M S, Lee S M, Kim Y J, Kim M I, Liu B Y, Park D W. React Kinet Mech Catal, 2012, 106: 25

    37. [37]

      [37] Zhang Y Y, Yin S F, Luo S L, Au C T. Ind Eng Chem Res, 2012, 51: 3951

    38. [38]

      [38] He L Q, Qin S J, Chang T, Sun Y Z, Zhao J Q. Int J Mol Sci, 2014, 15: 8656

    39. [39]

      [39] He L Q, Qin S J, Chang T, Sun Y Z, Gao X R. Catal Sci Technol, 2013, 3: 1102

    40. [40]

      [40] Chang T, He L Q, Bian L, Han H Y, Yuan M X, Gao X R. RSC Adv, 2014, 4: 727

    41. [41]

      [41] Fei Z F, Zhao D B, Geldbach T J, Scopelliti R, Dyson P J. Chem Eur J, 2004, 10: 4886

    42. [42]

      [42] Zhang J L, Han B X, Zhao Y J, Li J S, Hou M Q, Yang G Y. Chem Commun, 2011, 47: 1033

    43. [43]

      [43] Miao C X, Wang J Q, Wu Y, Du Y, He L N. ChemSusChem, 2008, 1: 236

  • 加载中
    1. [1]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    2. [2]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    5. [5]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    6. [6]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    7. [7]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    8. [8]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    9. [9]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    10. [10]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    11. [11]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    12. [12]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    13. [13]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    14. [14]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    15. [15]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    16. [16]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    17. [17]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    18. [18]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    19. [19]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    20. [20]

      Tao Wen Tao Zhang Changguo Sun Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055

Metrics
  • PDF Downloads(248)
  • Abstract views(797)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return