Citation:
Tao Chang, Xiaorui Gao, Li Bian, Xiying Fu, Mingxia Yuan, Huanwang Jing. Coupling of epoxides and carbon dioxide catalyzed by Brönsted acid ionic liquids[J]. Chinese Journal of Catalysis,
;2015, 36(3): 408-413.
doi:
10.1016/S1872-2067(14)60227-8
-
A series of Brönsted acid ionic liquids (BAILs) containing a long chain Brönsted acid site in the cationic part and a Lewis basic site in the anionic part were designed, synthesized, and used as catalyst for the coupling of epoxides and carbon dioxide to cyclic carbonates without a co-catalyst or co-solvent. The effects of catalyst structure and other parameters on the catalytic performance were investigated. The long chain 2-(N,N-dimethyldodecylammonium) acetic acid bromide ([(CH2COOH)DMDA]Br) showed high catalytic activity and good reusability. This protocol was expanded to various epoxides, which gave the corresponding cyclic carbonates in good yields. The acidity of the catalyst influenced its catalytic activity.
-
-
-
[1]
[1] Markewitz P, Kuckshinrichs W, Leitner W, Linssen J, Zapp P, Bongartz R, Schreiber A, Müller T E. Energy Environ Sci, 2012, 5: 7281
-
[2]
[2] Li L, Zhao N, Wei W, Sun Y H. Fuel, 2013, 108: 112
-
[3]
[3] Li H, Bhadury P S, Song B A, Yang S. RSC Adv, 2012, 2: 12525
-
[4]
[4] Fan Q J, Liu J H, Chen J, Xia C G. Chin J Catal(樊启佳, 刘建华, 陈静, 夏春谷. 催化学报), 2012, 33: 1435
-
[5]
[5] Castro-Osma J A, Lara-Sánchez A, North M, Otero A, Villuendas P. Catal Sci Technol, 2012, 2: 1021
-
[6]
[6] Lu X B, Darensbourg D J. Chem Soc Rev, 2012, 41: 1462
-
[7]
[7] Ren W M, Wu G P, Lin F, Jiang J Y, Liu C, Luo Y, Lu X B. Chem Sci, 2012, 3: 2094
-
[8]
[8] Beattie C, North M. Chem Eur J, 2014, 20: 8182
-
[9]
[9] Xie Y, Wang T T, Yang R X, Huang N Y, Zou K, Deng W Q. ChemSusChem, 2014, 7: 2110
-
[10]
[10] Iksi S, Aghmiz A, Rivas R, González M D, Cuesta-Aluja L, Castilla J, Orejón A, Guemmout F E, Masdeu-Bultó A M. J Mol Catal A, 2014, 383-384: 143
-
[11]
[11] Li B, Zhang L L, Song Y Y, Bai D S, Jing H W. J Mol Catal A, 2012, 363-364: 26
-
[12]
[12] Bai D S, Duan S H, Hai L, Jing H W. ChemCatChem, 2012, 4: 1752
-
[13]
[13] Ema T, Miyazaki Y, Koyama S, Yano Y, Sakai T. Chem Commun, 2012, 48: 4489
-
[14]
[14] Wei R J, Zhang X H, Du B Y, Fan Z Q, Qi G R. J Mol Catal A, 2013, 379: 38
-
[15]
[15] Tharun J, Hwang Y, Roshan R, Ahn S, Kathalikkattil A C, Park D W. Catal Sci Technol, 2012, 2: 1674
-
[16]
[16] Li C Y, Wu C R, Liu Y C, Ko B T. Chem Commun, 2012, 48: 9628
-
[17]
[17] Roeser J, Kailasam K, Thomas A. ChemSusChem, 2012, 5: 1793
-
[18]
[18] Dai W L, Jin B, Luo S L, Luo X B, Tu X M, Au C T. Catal Today, 2014, 233: 92
-
[19]
[19] Chen J X, Jin B, Dai W L, Deng S L, Cao L R, Cao Z J, Luo S L, Luo X B, Tu X M, Au C T. Appl Catal A, 2014, 484: 26
-
[20]
[20] Yu T, Weiss R G. Green Chem, 2012, 14: 209
-
[21]
[21] Gao J, Song Q W, He L N, Liu C, Yang Z Z, Han X, Li X D, Song Q C. Tetrahedron, 2012, 68: 3835
-
[22]
[22] He Q, O'Brien J W, Kitselman K A, Tompkins L E, Curtis G C T, Kerton F M. Catal Sci Technol, 2014, 4: 1513
-
[23]
[23] Ghazali-Esfahani S, Song H B, Pâunescu E, Bobbink F D, Liu H Z, Fei Z F, Laurenczy G, Bagherzadeh M, Yan N, Dyson P J. Green Chem, 2013, 15: 1584
-
[24]
[24] Dai W L, Jin B, Luo S L, Luo X B, Tu X M, Au C T. J Mol Catal A, 2013, 378: 326
-
[25]
[25] Song Q W, He L N, Wang J Q, Yasuda H, Sakakura T. Green Chem, 2013, 15: 110
-
[26]
[26] Tharun J, Kim D W, Roshan R, Hwang Y, Park D W. Catal Commun, 2013, 31: 62
-
[27]
[27] Wong W L, Lee L Y S, Ho K P, Zhou Z Y, Fan T, Lin Z Y, Wong K Y. Appl Catal A, 2014, 472: 160
-
[28]
[28] Wang F, Xu C Z, Li Z, Xia C G, Chen J. J Mol Catal A, 2014, 385: 133
-
[29]
[29] Dai W L, Jin B, Luo S L, Luo X B, Tu X M, Au C T. Appl Catal A, 2014, 470: 183
-
[30]
[30] Xiao L F, Sun D, Yue C T, Wu W. J CO2 Utilization, 2014, 6: 1
-
[31]
[31] Dai W L, Jin B, Luo S L, Yin S F, Luo X B, Au C T. J CO2 Utilization, 2013, 3-4: 7
-
[32]
[32] Sun J, Wang J Q, Cheng W G, Zhang J X, Li X H, Zhang S J, She Y B. Green Chem, 2012, 14: 654
-
[33]
[33] Watile R A, Deshmukh K M, Dhake K P, Bhanage B M. Catal Sci Technol,2012, 2: 1051
-
[34]
[34] Qu J, Cao C Y, Dou Z F, Liu H, Yu Y, Li P, Song W G. ChemSusChem, 2012, 5: 652
-
[35]
[35] Xiao L F, Lü D W, Su D, Wu W, Li H F. J Clean Prod, 2014, 67: 285
-
[36]
[36] Han L N, Choi S J, Park M S, Lee S M, Kim Y J, Kim M I, Liu B Y, Park D W. React Kinet Mech Catal, 2012, 106: 25
-
[37]
[37] Zhang Y Y, Yin S F, Luo S L, Au C T. Ind Eng Chem Res, 2012, 51: 3951
-
[38]
[38] He L Q, Qin S J, Chang T, Sun Y Z, Zhao J Q. Int J Mol Sci, 2014, 15: 8656
-
[39]
[39] He L Q, Qin S J, Chang T, Sun Y Z, Gao X R. Catal Sci Technol, 2013, 3: 1102
-
[40]
[40] Chang T, He L Q, Bian L, Han H Y, Yuan M X, Gao X R. RSC Adv, 2014, 4: 727
-
[41]
[41] Fei Z F, Zhao D B, Geldbach T J, Scopelliti R, Dyson P J. Chem Eur J, 2004, 10: 4886
-
[42]
[42] Zhang J L, Han B X, Zhao Y J, Li J S, Hou M Q, Yang G Y. Chem Commun, 2011, 47: 1033
-
[43]
[43] Miao C X, Wang J Q, Wu Y, Du Y, He L N. ChemSusChem, 2008, 1: 236
-
[1]
-
-
-
[1]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[2]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[3]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[4]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[5]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[6]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[7]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
-
[8]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[9]
Ruitong Zhang , Zhiqiang Zeng , Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004
-
[10]
Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020
-
[11]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[12]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[13]
Shuying Zhu , Shuting Wu , Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117
-
[14]
Guojie Xu , Fang Yu , Yunxia Wang , Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060
-
[15]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[16]
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
-
[17]
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
-
[18]
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
-
[19]
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
-
[20]
Tao Wen , Tao Zhang , Changguo Sun , Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055
-
[1]
Metrics
- PDF Downloads(248)
- Abstract views(797)
- HTML views(61)