Citation: Andrzej Jablonski, Adam Lewera. Improving the efficiency of a direct ethanol fuel cell by a periodic load change[J]. Chinese Journal of Catalysis, ;2015, 36(4): 496-501. doi: 10.1016/S1872-2067(14)60226-6 shu

Improving the efficiency of a direct ethanol fuel cell by a periodic load change

  • Corresponding author: Adam Lewera, 
  • Received Date: 20 July 2014
    Available Online: 12 September 2014

  • We present a simple method to increase the efficiency of a direct ethanol fuel cell by a periodic modulation of the load (pulsed mode). The fuel cell was periodically short circuited with a resistor (1 Ω) for a few seconds (high load period) followed by a low load period of up to 100 s when the resistor was disconnected. The open circuit voltage (OCV) values before and after the short circuit of the cell showed an increase of up to 70 mV. The higher OCV was due to the oxidation and removal of strongly adsorbed CO during the electric short circuit when the electric potential of the anode was increased to be close to the cathode potential. The depoisoned anode surface was much more active directly after the short circuit. The slow decrease of the OCV observed after the short circuit was caused by the subsequent poisoning of the anode surface, which can be neutralized by another short circuit. In general, a stable increase in cell performance was obtained by repetition of the electric short circuit. The data showed that the pulse mode gave an increase in the power generated by the direct ethanol fuel cell by up to 51% and was 6% on average. It is anticipated that this mode of operation can be used also in different types of polymer electrolyte membrane fuel cells where CO poisoning is a problem, and after optimization of the parameters, a much higher gain in efficiency can be obtained.
  • 加载中
    1. [1]

      [1] Song S Q, Tsiakaras P. Appl Catal B, 2006, 63: 187

    2. [2]

      [2] Lamy C, Belgsir E M, Leger J M. J Appl Electrochem, 2001, 31: 799

    3. [3]

      [3] Antolini E. J Power Sources, 2007, 170: 1

    4. [4]

      [4] Zhou W J, Zhou Z H, Song S Q, Li W Z, Sun G Q, Tsiakaras P, Xin Q. Appl Catal B, 2003, 46: 273

    5. [5]

      [5] Song S Q, Zhou W J, Zhou Z H, Jiang L H, Sun G Q, Xin Q, Leontidis V, Kontou S, Tsiakaras P. Int J Hydrogen Energy, 2005, 30: 995

    6. [6]

      [6] Brouzgou A, Podias A, Tsiakaras P. J Appl Electrochem, 2013, 43: 119

    7. [7]

      [7] Brouzgou A, Song S Q, Tsiakaras P. Appl Catal B, 2012, 127: 371

    8. [8]

      [8] Nakagawa N, Ito Y, Tsujiguchi T, Ishitobi H. J Power Sources, 2014, 248: 330

    9. [9]

      [9] Nakagawa N, Kaneda Y, Wagatsuma M, Tsujiguchi T. J Power Sources, 2012, 199: 103

    10. [10]

      [10] Zhou W J, Song S Q, Li W Z, Sun G Q, Xin Q, Kontou S, Poulianitis K, Tsiakaras P. Solid State Ionics, 2004, 175: 797

    11. [11]

      [11] Zhou W J, Li W Z, Song S Q, Zhou Z H, Jiang L H, Sun G Q, Xin Q, Poulianitis K, Kontou S, Tsiakaras P. J Power Sources, 2004, 131: 217

    12. [12]

      [12] Lamy C, Rousseau S, Belgsir E M, Coutanceau C, Leger J M. Electrochim Acta, 2004, 49: 3901

    13. [13]

      [13] Borup R, Meyers J, Pivovar B, Kim Y S, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath J E, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima K I, Iwashita N. Chem Rev, 2007, 107: 3904

    14. [14]

      [14] Collier A, Wang H J, Yuan X Z, Zhang J J, Wilkinson D P. Int J Hydrogen Energy, 2006, 31: 1838

    15. [15]

      [15] Inaba M, Kinumoto T, Kiriake M, Umebayashi R, Tasaka A, Ogumi Z. Electrochim Acta, 2006, 51: 5746

    16. [16]

      [16] Jablonski A, Lewera A. Appl Catal B, 2012, 115-116: 25

    17. [17]

      [17] Jablonski A, Kulesza P J, Lewera A. J Power Sources, 2011, 196: 4714

    18. [18]

      [18] Seweryn J, Lewera A. Appl Catal B, 2014, 144: 129

    19. [19]

      [19] Seweryn J, Lewera A. J Power Sources, 2012, 205: 264

    20. [20]

      [20] Vigier F, Coutanceau C, Hahn F, Belgsir E M, Lamy C. J Electroanal Chem, 2004, 563: 81

    21. [21]

      [21] Wang J T, Wasmus S, Savinell R F. J Electrochem Soc, 1995, 142: 4218

    22. [22]

      [22] Rousseau S, Coutanceau C, Lamy C, Leger J M. J Power Sources, 2006, 158: 18

    23. [23]

      [23] Jin J M, Sheng T, Lin X, Kavanagh R, Hamer P, Hu P J, Hardacre C, Martinez-Bonastre A, Sharman J, Thompsett D, Lin W F. Phys Chem Chem Phys, 2014, 16: 9432

    24. [24]

      [24] Januszewska A, Dercz G, Piwowar J, Jurczakowski R, Lewera A. Chem Eur J, 2013, 19: 17159

    25. [25]

      [25] Kolary-Zurowska A, Zieleniak A, Miecznikowski K, Baranowska B, Lewera A, Fiechter S, Bogdanoff P, Dorbandt I, Marassi R, Kulesza P J. J Solid State Electrochem, 2007, 11: 915

    26. [26]

      [26] Li M, Kowal A, Sasaki K, Marinkovic N, Su D, Korach E, Liu P, Adzic R R. Electrochim Acta, 2010, 55: 4331

    27. [27]

      [27] Kowal A, Li M, Shao M, Sasaki K, Vukmirovic M B, Zhang J, Marinkovic N S, Liu P, Frenkel A I, Adzic R R. Nat Mater, 2009, 8: 325

    28. [28]

      [28] Figueiredo M C, Aran-Ais R M, Feliu J M, Kontturi K, Kallio T. J Catal, 2014, 312: 78

    29. [29]

      [29] Choban E R, Markoski L J, Wieckowski A, Kenis P J A. J Power Sources, 2004, 128: 54

    30. [30]

      [30] Jayashree R S, Gancs L, Choban E R, Primak A, Natarajan D, Markoski L J, Kenis P J A. J Am Chem Soc, 2005, 127: 16758

    31. [31]

      [31] Hitmi H, Belgsir E M, Leger J M, Lamy C, Lezna R O. Electrochim Acta, 1994, 39: 407

    32. [32]

      [32] Watanabe M, Motoo S. J Electroanal Chem Interfacial Electrochem, 1975, 60: 267

    33. [33]

      [33] Watanabe M, Motoo S. J Electroanal Chem Interfacial Electrochem, 1975, 60: 275

    34. [34]

      [34] Kutz R B, Braunschweig B, Mukherjee P, Behrens R L, Dlott D D, Wieckowski A. J Catal, 2011, 278: 181

    35. [35]

      [35] Heinen M, Jusys Z, Behm R J. J Phys Chem C, 2010, 114: 9850

  • 加载中
    1. [1]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    2. [2]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    3. [3]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    4. [4]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    5. [5]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    6. [6]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    7. [7]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

    8. [8]

      Hongliang ZengYuan JiJinfeng WenXu LiTingting ZhengQiu JiangChuan Xia . Pt nanocluster-catalyzed hydrogen evolution reaction: Recent advances and future outlook. Chinese Chemical Letters, 2025, 36(3): 109686-. doi: 10.1016/j.cclet.2024.109686

    9. [9]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    10. [10]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    11. [11]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    12. [12]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    13. [13]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

    14. [14]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    15. [15]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    16. [16]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

    17. [17]

      Ting XieXun HeLang HeKai DongYongchao YaoZhengwei CaiXuwei LiuXiaoya FanTengyue LiDongdong ZhengShengjun SunLuming LiWei ChuAsmaa FaroukMohamed S. HamdyChenggang XuQingquan KongXuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005

    18. [18]

      Quanyou GuoYue YangTingting HuHongqi ChuLijun LiaoXuepeng WangZhenzi LiLiping GuoWei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235

    19. [19]

      Bowen LiTing WangMing XuYuqi WangZhaoxing LiMei LiuWenjing ZhangMing Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467

    20. [20]

      Hong-Rui LiXia KangRui GaoMiao-Miao ShiBo BiZe-Yu ChenJun-Min Yan . Interfacial interactions of Cu/MnOOH enhance ammonia synthesis from electrochemical nitrate reduction. Chinese Chemical Letters, 2025, 36(2): 109958-. doi: 10.1016/j.cclet.2024.109958

Metrics
  • PDF Downloads(254)
  • Abstract views(470)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return