Citation:
Andrzej Jablonski, Adam Lewera. Improving the efficiency of a direct ethanol fuel cell by a periodic load change[J]. Chinese Journal of Catalysis,
;2015, 36(4): 496-501.
doi:
10.1016/S1872-2067(14)60226-6
-
We present a simple method to increase the efficiency of a direct ethanol fuel cell by a periodic modulation of the load (pulsed mode). The fuel cell was periodically short circuited with a resistor (1 Ω) for a few seconds (high load period) followed by a low load period of up to 100 s when the resistor was disconnected. The open circuit voltage (OCV) values before and after the short circuit of the cell showed an increase of up to 70 mV. The higher OCV was due to the oxidation and removal of strongly adsorbed CO during the electric short circuit when the electric potential of the anode was increased to be close to the cathode potential. The depoisoned anode surface was much more active directly after the short circuit. The slow decrease of the OCV observed after the short circuit was caused by the subsequent poisoning of the anode surface, which can be neutralized by another short circuit. In general, a stable increase in cell performance was obtained by repetition of the electric short circuit. The data showed that the pulse mode gave an increase in the power generated by the direct ethanol fuel cell by up to 51% and was 6% on average. It is anticipated that this mode of operation can be used also in different types of polymer electrolyte membrane fuel cells where CO poisoning is a problem, and after optimization of the parameters, a much higher gain in efficiency can be obtained.
-
-
-
[1]
[1] Song S Q, Tsiakaras P. Appl Catal B, 2006, 63: 187
-
[2]
[2] Lamy C, Belgsir E M, Leger J M. J Appl Electrochem, 2001, 31: 799
-
[3]
[3] Antolini E. J Power Sources, 2007, 170: 1
-
[4]
[4] Zhou W J, Zhou Z H, Song S Q, Li W Z, Sun G Q, Tsiakaras P, Xin Q. Appl Catal B, 2003, 46: 273
-
[5]
[5] Song S Q, Zhou W J, Zhou Z H, Jiang L H, Sun G Q, Xin Q, Leontidis V, Kontou S, Tsiakaras P. Int J Hydrogen Energy, 2005, 30: 995
-
[6]
[6] Brouzgou A, Podias A, Tsiakaras P. J Appl Electrochem, 2013, 43: 119
-
[7]
[7] Brouzgou A, Song S Q, Tsiakaras P. Appl Catal B, 2012, 127: 371
-
[8]
[8] Nakagawa N, Ito Y, Tsujiguchi T, Ishitobi H. J Power Sources, 2014, 248: 330
-
[9]
[9] Nakagawa N, Kaneda Y, Wagatsuma M, Tsujiguchi T. J Power Sources, 2012, 199: 103
-
[10]
[10] Zhou W J, Song S Q, Li W Z, Sun G Q, Xin Q, Kontou S, Poulianitis K, Tsiakaras P. Solid State Ionics, 2004, 175: 797
-
[11]
[11] Zhou W J, Li W Z, Song S Q, Zhou Z H, Jiang L H, Sun G Q, Xin Q, Poulianitis K, Kontou S, Tsiakaras P. J Power Sources, 2004, 131: 217
-
[12]
[12] Lamy C, Rousseau S, Belgsir E M, Coutanceau C, Leger J M. Electrochim Acta, 2004, 49: 3901
-
[13]
[13] Borup R, Meyers J, Pivovar B, Kim Y S, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath J E, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima K I, Iwashita N. Chem Rev, 2007, 107: 3904
-
[14]
[14] Collier A, Wang H J, Yuan X Z, Zhang J J, Wilkinson D P. Int J Hydrogen Energy, 2006, 31: 1838
-
[15]
[15] Inaba M, Kinumoto T, Kiriake M, Umebayashi R, Tasaka A, Ogumi Z. Electrochim Acta, 2006, 51: 5746
-
[16]
[16] Jablonski A, Lewera A. Appl Catal B, 2012, 115-116: 25
-
[17]
[17] Jablonski A, Kulesza P J, Lewera A. J Power Sources, 2011, 196: 4714
-
[18]
[18] Seweryn J, Lewera A. Appl Catal B, 2014, 144: 129
-
[19]
[19] Seweryn J, Lewera A. J Power Sources, 2012, 205: 264
-
[20]
[20] Vigier F, Coutanceau C, Hahn F, Belgsir E M, Lamy C. J Electroanal Chem, 2004, 563: 81
-
[21]
[21] Wang J T, Wasmus S, Savinell R F. J Electrochem Soc, 1995, 142: 4218
-
[22]
[22] Rousseau S, Coutanceau C, Lamy C, Leger J M. J Power Sources, 2006, 158: 18
-
[23]
[23] Jin J M, Sheng T, Lin X, Kavanagh R, Hamer P, Hu P J, Hardacre C, Martinez-Bonastre A, Sharman J, Thompsett D, Lin W F. Phys Chem Chem Phys, 2014, 16: 9432
-
[24]
[24] Januszewska A, Dercz G, Piwowar J, Jurczakowski R, Lewera A. Chem Eur J, 2013, 19: 17159
-
[25]
[25] Kolary-Zurowska A, Zieleniak A, Miecznikowski K, Baranowska B, Lewera A, Fiechter S, Bogdanoff P, Dorbandt I, Marassi R, Kulesza P J. J Solid State Electrochem, 2007, 11: 915
-
[26]
[26] Li M, Kowal A, Sasaki K, Marinkovic N, Su D, Korach E, Liu P, Adzic R R. Electrochim Acta, 2010, 55: 4331
-
[27]
[27] Kowal A, Li M, Shao M, Sasaki K, Vukmirovic M B, Zhang J, Marinkovic N S, Liu P, Frenkel A I, Adzic R R. Nat Mater, 2009, 8: 325
-
[28]
[28] Figueiredo M C, Aran-Ais R M, Feliu J M, Kontturi K, Kallio T. J Catal, 2014, 312: 78
-
[29]
[29] Choban E R, Markoski L J, Wieckowski A, Kenis P J A. J Power Sources, 2004, 128: 54
-
[30]
[30] Jayashree R S, Gancs L, Choban E R, Primak A, Natarajan D, Markoski L J, Kenis P J A. J Am Chem Soc, 2005, 127: 16758
-
[31]
[31] Hitmi H, Belgsir E M, Leger J M, Lamy C, Lezna R O. Electrochim Acta, 1994, 39: 407
-
[32]
[32] Watanabe M, Motoo S. J Electroanal Chem Interfacial Electrochem, 1975, 60: 267
-
[33]
[33] Watanabe M, Motoo S. J Electroanal Chem Interfacial Electrochem, 1975, 60: 275
-
[34]
[34] Kutz R B, Braunschweig B, Mukherjee P, Behrens R L, Dlott D D, Wieckowski A. J Catal, 2011, 278: 181
-
[35]
[35] Heinen M, Jusys Z, Behm R J. J Phys Chem C, 2010, 114: 9850
-
[1]
-
-
-
[1]
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
-
[2]
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
-
[3]
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
-
[4]
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
-
[5]
Jin Long , Xingqun Zheng , Bin Wang , Chenzhong Wu , Qingmei Wang , Lishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354
-
[6]
Lian Sun , Honglei Wang , Ming Ma , Tingting Cao , Leilei Zhang , Xingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188
-
[7]
Jialin Cai , Yizhe Chen , Ruiwen Zhang , Cheng Yuan , Zeyu Jin , Yongting Chen , Shiming Zhang , Jiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255
-
[8]
Hongliang Zeng , Yuan Ji , Jinfeng Wen , Xu Li , Tingting Zheng , Qiu Jiang , Chuan Xia . Pt nanocluster-catalyzed hydrogen evolution reaction: Recent advances and future outlook. Chinese Chemical Letters, 2025, 36(3): 109686-. doi: 10.1016/j.cclet.2024.109686
-
[9]
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
-
[10]
Yue Zhang , Xiaoya Fan , Xun He , Tingyu Yan , Yongchao Yao , Dongdong Zheng , Jingxiang Zhao , Qinghai Cai , Qian Liu , Luming Li , Wei Chu , Shengjun Sun , Xuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806
-
[11]
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
-
[12]
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
-
[13]
Wei Zhou , Xi Chen , Lin Lu , Xian-Rong Song , Mu-Jia Luo , Qiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902
-
[14]
Zhihao Gu , Jiabo Le , Hehe Wei , Zehui Sun , Mahmoud Elsayed Hafez , Wei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849
-
[15]
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
-
[16]
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
-
[17]
Ting Xie , Xun He , Lang He , Kai Dong , Yongchao Yao , Zhengwei Cai , Xuwei Liu , Xiaoya Fan , Tengyue Li , Dongdong Zheng , Shengjun Sun , Luming Li , Wei Chu , Asmaa Farouk , Mohamed S. Hamdy , Chenggang Xu , Qingquan Kong , Xuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005
-
[18]
Quanyou Guo , Yue Yang , Tingting Hu , Hongqi Chu , Lijun Liao , Xuepeng Wang , Zhenzi Li , Liping Guo , Wei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235
-
[19]
Bowen Li , Ting Wang , Ming Xu , Yuqi Wang , Zhaoxing Li , Mei Liu , Wenjing Zhang , Ming Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467
-
[20]
Hong-Rui Li , Xia Kang , Rui Gao , Miao-Miao Shi , Bo Bi , Ze-Yu Chen , Jun-Min Yan . Interfacial interactions of Cu/MnOOH enhance ammonia synthesis from electrochemical nitrate reduction. Chinese Chemical Letters, 2025, 36(2): 109958-. doi: 10.1016/j.cclet.2024.109958
-
[1]
Metrics
- PDF Downloads(254)
- Abstract views(469)
- HTML views(11)