Citation: Xingquan Xiong, Chao Yi, Qian Han, Lin Shi, Sizhong Li. I2/ionic liquid as a highly efficient catalyst for per-O-acetylation of sugar under microwave irradiation[J]. Chinese Journal of Catalysis, ;2015, 36(2): 237-243. doi: 10.1016/S1872-2067(14)60219-9 shu

I2/ionic liquid as a highly efficient catalyst for per-O-acetylation of sugar under microwave irradiation

  • Corresponding author: Xingquan Xiong, 
  • Received Date: 19 June 2014
    Available Online: 29 August 2014

    Fund Project: 国家自然科学基金(21004024) (21004024) 福建省自然科学基金(2011J01046) (2011J01046) 福建省“高校新世纪优秀人才支持计划”(2012FJ- NCET-ZR03) (2012FJ- NCET-ZR03) 福建省“高校杰出青年科研人才培育计划”(11FJPY02) (11FJPY02) 华侨大学中青年教师科研提升资助计划(ZQN-YX103) (ZQN-YX103) 福建省青年人才创新项目(2011J05131). (2011J05131)

  • A practical and highly efficient approach was developed to synthesize peracetylated sugar derivatives using a recyclable iodine/PEG400-based ionic liquid catalyst (I2/IL). The peracetylated sugars were readily obtained in a few minutes in excellent yields (90%-99%, 13 examples) on a multi-gram scale (50.0 mmol) by the reaction of sugar and acetic anhydride under microwave irradiation in the absence of a volatile organic solvent. The desired product was easily obtained by simple extraction with toluene from the reaction mixture, and I2/ILs can be readily recovered and reused at least six times without obvious loss in the yield. When the scale of the per-O-acetylation reaction was increased to 50.0 mmol, the desired product was still obtained in 90% yield after five recycles.
  • 加载中
    1. [1]

      [1] Collins P C, Ferrier R J. Monosaccharides: Their Chemistry and Their Roles in Natural Products. New York: John Wiley & Sons, 1995. 360

    2. [2]

      [2] Garegg P J. Acc Chem Res, 1992, 25: 575

    3. [3]

      [3] Kunz H. Angew Chem Int Ed, 1987, 26: 294

    4. [4]

      [4] Dwek R A. Chem Rev, 1996, 96: 683

    5. [5]

      [5] Nicolaou K C, Mitchell H J. Angew Chem Int Ed, 2001, 40: 1576

    6. [6]

      [6] Davis B G. Chem Rev, 2002, 102: 579

    7. [7]

      [7] Toshima K, Tatsuta K. Chem Rev, 1993, 93: 1503

    8. [8]

      [8] Ye X S, Wong C H. J Org Chem, 2000, 65: 2410

    9. [9]

      [9] Li B, Zeng Y, Hauser S, Song H J, Wang L X. J Am Chem Soc, 2005, 127: 9692

    10. [10]

      [10] Wang Q B, Fu J, Zhang J B. Carbohydr Res, 2008, 343: 2989

    11. [11]

      [11] Wolfrom M L, Thompson A. In: Whistler R L, Wolfrom M L, BeMiller J N, eds. Methods in Carbohydrate Chemistry. Vol. 2. New York: Academic Press, 1963. 211

    12. [12]

      [12] Cohen R B, Tsou K C, Rutenburg S H, Seligman A M. J Biol Chem, 1952, 195: 239

    13. [13]

      [13] Hyatt J A, Tindall G W. Heterocycles, 1993, 35: 227

    14. [14]

      [14] Vogel A I. Vogel's Textbook of Practical Organic Chemistry. 5th Ed. New York: Wiley, 1989. 644

    15. [15]

      [15] Das S K, Reddy K A, Krovvidi V L N R, Mukkanti K. Carbohydr Res, 2005, 340: 1387

    16. [16]

      [16] Bizier N P, Atkins S R, Helland L C, Colvin S F, Twitchell J R, Cloninger M J. Carbohydr Res, 2008, 343: 1814

    17. [17]

      [17] Limousin C, Cleophax J, Petit A, Loupy A, Lukacs G. J Carbohydr Chem, 1997, 16: 327

    18. [18]

      [18] Shi L, Zhang G S, Pan F. Tetrahedron, 2008, 64: 2572

    19. [19]

      [19] Dasgupta F, Singh P P, Srivastava H C. Carbohydr Res, 1980, 80: 346

    20. [20]

      [20] Orita A, Tanahashi C, Kakuda A, Otera J. J Org Chem, 2001, 66: 8926

    21. [21]

      [21] Lee J C, Tai C A, Hung S C. Tetrahedron Lett, 2002, 43: 851

    22. [22]

      [22] Procopiou P A, Baugh S P D, Flack S S, Inglis G G A. J Org Chem, 1998, 63: 2342

    23. [23]

      [23] Tai C A, Kulkarni S S, Hung S C. J Org Chem, 2003, 68: 8719

    24. [24]

      [24] Bartoli G, Dalpozzo R, De Nino A, Maiuolo L, Nardi M, Procopio A, Tagarelli A. Green Chem, 2004, 6: 191

    25. [25]

      [25] Agnihotri G, Tiwari P, Misra A K. Carbohydr Res, 2005, 340: 1393

    26. [26]

      [26] Wu H, Shen Y, Fan L Y, Wan Y, Shi D Q. Tetrahedron, 2006, 62: 7995

    27. [27]

      [27] Mukhopadhyay B, Russell D A, Field R A. Carbohydr Res, 2005, 340: 1075

    28. [28]

      [28] Misra A K, Tiwari P, Madhusudan S K. Carbohydr Res, 2005, 340: 325

    29. [29]

      [29] Wu L Q, Yin Z K. Carbohydr Res, 2013, 365: 14

    30. [30]

      [30] Zhang J B, Zhang B, Zhou J F, Li J, Shi C J, Huang T, Wang Z F, Tang J. J Carbohydr Chem, 2011, 30: 165

    31. [31]

      [31] Zhou Y, Yan P F, Li G M, Chen Z J. Chin J Org Chem (周颖, 闫鹏飞, 李光明, 陈正军. 有机化学), 2009, 29: 1719

    32. [32]

      [32] Kartha K P R, Field R A. Tetrahedron, 1997, 53: 11753

    33. [33]

      [33] Mingos D M P, Whittaker A G. In: van Eldik R, Hubbard C D, eds. Microwave Dielectric Heating Effects in Chemical Synthesis in Chemistry under Extreme or Nonclassical Conditions. New York: John Wiley & Sons, 1997. 479

    34. [34]

      [34] Loupy A. Microwaves in Organic Synthesis. Weinheim: Wiley-VCH, 2002

    35. [35]

      [35] Hayes B L. Microwave Synthesis: Chemistry at the Speed of Light. Matthews, NC: CEM Publishing, 2002

    36. [36]

      [36] Varma R S. Microwave Technology—Chemical Synthesis Applications: Kirk-Othmer Encyclopedia of Chemical Technology. New York: John Wiley & Sons, 2003

    37. [37]

      [37] Lidstrom P, Tierney J, Wathey B, Westman J. Tetrahedron, 2001, 57: 9225

    38. [38]

      [38] De la Hoz A, Díaz-Ortiz Á, Moreno A. Chem Soc Rev, 2005, 34: 164

    39. [39]

      [39] Xiong X Q, Cai L, Tang Z K. Chin J Org Chem (熊兴泉, 蔡雷, 唐忠科. 有机化学), 2012, 32: 1410

    40. [40]

      [40] Xiong X Q, Cai L. Catal Sci Technol, 2013, 3: 1301

    41. [41]

      [41] Xiong X Q, Chen H X, Tang Z K, Jiang Y B. RSC Adv, 2014, 4: 9830

    42. [42]

      [42] Xiong X Q, Cai L, Jiang Y B, Han Q. ACS Sustainable Chem Eng, 2014, 2: 765

    43. [43]

      [43] Xiong X Q, Chen H X, Zhu R J. Catal Commun, 2014, 54: 94

  • 加载中
    1. [1]

      Lin Ding Jinpeng Zhang Junfeng Li Daying Liu . Color Catcher: A Marvelous Encounter of Starch and Iodine. University Chemistry, 2024, 39(6): 334-341. doi: 10.3866/PKU.DXHX202311064

    2. [2]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    3. [3]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    4. [4]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    5. [5]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    6. [6]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    7. [7]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    8. [8]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    9. [9]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    10. [10]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    11. [11]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

    12. [12]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    13. [13]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    14. [14]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    15. [15]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    16. [16]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    17. [17]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    18. [18]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    19. [19]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    20. [20]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

Metrics
  • PDF Downloads(238)
  • Abstract views(467)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return