Citation: Lei Pang, Chi Fan, Lina Shao, Junxia Yi, Xing Cai, Jian Wang, Ming Kang, Tao Li. Effect of V2O5/WO3-TiO2 catalyst preparation method on NOx removal from diesel exhaust[J]. Chinese Journal of Catalysis, ;2014, 35(12): 2020-2028. doi: 10.1016/S1872-2067(14)60218-7 shu

Effect of V2O5/WO3-TiO2 catalyst preparation method on NOx removal from diesel exhaust

  • Corresponding author: Tao Li, 
  • Received Date: 20 June 2014
    Available Online: 2 September 2014

  • V2O5/WO3-TiO2 catalysts were prepared by conventional impregnation (VWTi-con) and ultras­ound-assisted impregnation methods (VWTi-HUST). Their catalytic performance was tested for the selective catalytic reduction (SCR) of NO with NH3. The effects of the preparation methods on the catalyst properties were studied. The catalysts were characterized by X-ray diffraction, scanning electron microscopy, Raman and X-ray photoelectron spectroscopy. Both structural investigation and NH3-SCR activity showed that the preparation method had a strong effect on the thermal behavior of the V2O5/WO3-TiO2 catalysts. After a hydrothermal treatment, a significant loss of NO reduction activity was observed for the VWTi-con catalyst, which suffered severe sintering and even formed a rutile VxTi1-xO2 solid solution, while the VWTi-HUST catalyst had the same good hydrothermal stability as a commercial catalyst, indicating that the VWTi-HUST catalyst can be used in a commercial diesel after-treatment system. The ultrasound-assisted impregnation method produced a stronger interaction between the vanadium species and WTi support, which stabilized the vanadium species in the reduced state.
  • 加载中
    1. [1]

      [1] Kašpar J, Fornasiero P, Hickey N. Catal Today, 2003, 77: 419

    2. [2]

      [2] Schultz M G, Diehl T, Brasseur G P, Zittel W. Science, 2003, 302: 624

    3. [3]

      [3] Skalska K, Miller J S, Ledakowicz S. Sci Total Environ, 2010, 408: 3976

    4. [4]

      [4] Nakajima F, Hamada I. Catal Today, 1996, 29: 109

    5. [5]

      [5] Forzatti P. Appl Catal A, 2001, 222: 221

    6. [6]

      [6] Liu Z M, Woo S I. Catal Rev-Sci Eng, 2006, 48: 43

    7. [7]

      [7] Liu F D, Shan W P, Shi X Y, He H. Chem Prog (刘福东, 单文坡, 石晓燕, 贺泓. 化学进展), 2012, 24: 446

    8. [8]

      [8] Zhao Z, Zhang G Z, Liu J, Liang P, Xu J, Duan A J, Jiang G Y, Xu C M. Chin J Catal (赵震, 张桂臻, 刘坚, 梁鹏, 许洁, 段爱军, 姜桂元, 徐春明. 催化学报), 2008, 29: 303

    9. [9]

      [9] Li J H, Chang H Z, Ma L, Hao J M, Yang R T. Catal Today, 2011, 175: 147

    10. [10]

      [10] Kobayashi M, Kuma R, Masaki S, Sugishima N. Appl Catal B, 2005, 60: 173

    11. [11]

      [11] Kröcher O, Elsener M. Appl Catal B, 2008, 77: 215

    12. [12]

      [12] Choo S T, Lee Y G, Nam I S, Ham S W, Lee J B. Appl Catal A, 2000, 200: 177

    13. [13]

      [13] Li M, Altman E I. J Phys Chem C, 2009, 113: 2798

    14. [14]

      [14] Wachs I E. J Catal, 1990, 124: 570

    15. [15]

      [15] Tang F S, Zhuang K, Yang F, Yang L L, Xu B L, Qiu J H, Fan Y N. Chin J Catal (唐富顺, 庄柯, 杨芳, 杨利利, 许波连, 邱金恒, 范以宁. 催化学报), 2012, 33: 933

    16. [16]

      [16] Wachs I E, Weckhuysen B M. Appl Catal A, 1997, 157: 67

    17. [17]

      [17] Xu H D, Fang Z T, Cao Y, Kong S, Lin T, Gong M C, Chen Y Q. Chin J catal (徐海迪, 房志涛, 曹毅, 孔爽, 林涛, 龚茂初, 陈耀强. 催化学报), 2012, 33: 1927

    18. [18]

      [18] Odenbrand C U I. Chem Eng Res Des, 2008, 86: 663

    19. [19]

      [19] Madia G, Elsener M, Koebel M, Raimondi F, Wokaun A. Appl Catal B, 2002, 39: 181

    20. [20]

      [20] Van Setten B A A L, Makkee M, Moulijn J A. Catal Rev-Sci Eng, 2001, 43: 489

    21. [21]

      [21] Thiruvengadam A, Besch M C, Carder D K, Oshinuga A, Gautam M. Environ Sci Technol, 2012, 46: 1907

    22. [22]

      [22] Reddy B M, Mehdi S, Reddy E P. Catal Lett, 1993, 20: 317

    23. [23]

      [23] Albonetti S, Blasioli S, Bugani M, Lehaut-Burnouf C, Augustine S, Roncari E, Trifirò F. Environ Chem Lett, 2003, 1: 197

    24. [24]

      [24] Reddy B M, Kumar M V, Reddy E P, Mehdi S. Catal Lett, 1996, 36: 187

    25. [25]

      [25] Shi A J, Wang X Q, Yu T, Shen M Q. Appl Catal B, 2011, 106: 359

    26. [26]

      [26] Casanova M, Schermanz K, Llorca J, Trovarelli A. Catal Today, 2012, 184: 227

    27. [27]

      [27] Reiche M A, Hug P, Baiker A. J Catal, 2000, 192: 400

    28. [28]

      [28] Reddy B M, Ganesh I, Reddy E P. J Phys Chem B, 1997, 101: 1769

    29. [29]

      [29] Chiker F, Nogier J P, Bonardet J L. Catal Today, 2003, 78: 139

    30. [30]

      [30] Went G T, Leu L, Bell A T. J Catal, 1992, 134: 479

    31. [31]

      [31] Yu X F, Wu N Z, Xie Y C, Tang Y Q. J Mater Sci Lett, 2001, 20: 319

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    3. [3]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    4. [4]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    5. [5]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    6. [6]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    8. [8]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    9. [9]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    12. [12]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    13. [13]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    14. [14]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    15. [15]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    16. [16]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    17. [17]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    18. [18]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    19. [19]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    20. [20]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

Metrics
  • PDF Downloads(0)
  • Abstract views(313)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return