Citation: Zhe Li, Lei Liu. Recent advances in mechanistic studies on Ni catalyzed cross-coupling reactions[J]. Chinese Journal of Catalysis, ;2015, 36(1): 3-14. doi: 10.1016/S1872-2067(14)60217-5 shu

Recent advances in mechanistic studies on Ni catalyzed cross-coupling reactions

  • Corresponding author: Lei Liu, 
  • Received Date: 11 August 2014
    Available Online: 4 September 2014

    Fund Project: 国家高技术研究发展计划(863计划, 2012AA02A700) (863计划, 2012AA02A700) 国家自然科学基金(21221062). (21221062)

  • A variety of Ni catalyzed cross-coupling reactions have emerged as efficient new methods for the construction of C-C bonds, and many mechanistic studies have been conducted to understand the factors controlling the reactivity and selectivity of Ni catalyzed reactions. The mechanisms of Ni catalyzed reactions are often very different from the corresponding Pd catalyzed processes because radical or bimetallic pathways are frequently involved in Ni catalyzed cross-coupling reactions. This review summarized recent advances in the mechanism of Ni catalyzed cross-coupling reactions. These are important for the development of new Ni catalyzed cross-coupling reactions with improved efficiency and selectivity.
  • 加载中
    1. [1]

      [1] Corbet J P, Mignani G. Chem Rev, 2006, 106: 2651

    2. [2]

      [2] Magano J, Dunetz J R. Chem Rev, 2011, 111: 2177

    3. [3]

      [3] Cai S F, Wang D S, Niu Z Q, Li Y D. Chin J Catal (蔡双飞, 王定胜, 牛志强, 李亚栋. 催化学报), 2013, 34: 1964

    4. [4]

      [4] Torborg C, Beller M. Adv Synth Catal, 2009, 351: 3027

    5. [5]

      [5] Nicolaou K C, Bulger P G, Sarlah D. Angew Chem Int Ed, 2005, 44: 4442

    6. [6]

      [6] Wang Y F, Deng W, Liu L, Guo Q X. Chin J Org Chem (有机化学), 2005, 25: 8

    7. [7]

      [7] Li Z, Fu Y, Liu L, Guo Q X. Chin J Org Chem (有机化学), 2005, 25: 1508

    8. [8]

      [8] Rosen B M, Quasdorf K W, Wilson D A, Zhang N, Resmerita A M, Garg N K, Percec V. Chem Rev, 2011, 111: 1346

    9. [9]

      [9] Jana R, Pathak T P, Sigman M S. Chem Rev, 2011, 111: 1417

    10. [10]

      [10] Tasker S Z, Standley E A, Jamison T F. Nature, 2014, 509: 299

    11. [11]

      [11] Guan B T, Wang Y, Li B J, Yu D G, Shi Z J. J Am Chem Soc, 2008, 130: 14468

    12. [12]

      [12] Ke H H, Chen X F, Feng Y Y, Zou G. Sci China Chem, 2014, 57: 1126

    13. [13]

      [13] Li Z, Zhang S L, Fu Y, Guo Q X, Liu L. J Am Chem Soc, 2009, 131: 8815

    14. [14]

      [14] Zhou J, Fu G C. J Am Chem Soc, 2003, 125: 14726

    15. [15]

      [15] Zhou J, Fu G C. J Am Chem Soc, 2004, 126: 1340

    16. [16]

      [16] Powell D A, Fu G C. J Am Chem Soc, 2004, 126: 7788

    17. [17]

      [17] Csok Z, Vechorkin O, Harkins S B, Scopelliti R, Hu X L. J Am Chem Soc, 2008, 130: 8156

    18. [18]

      [18] Zhou Q, Srinivas H D, Dasgupta S, Watson M P. J Am Chem Soc, 2013, 135: 3307

    19. [19]

      [19] Harris M R, Hanna L E, Greene M A, Moore C E, Jarvo E R. J Am Chem Soc, 2013, 135: 3303

    20. [20]

      [20] Sylvester K T, Wu K, Doyle A G. J Am Chem Soc, 2012, 134: 16967

    21. [21]

      [21] Maity P, Shacklady-McAtee D M, Yap G P A, Sirianni E R, Watson M P. J Am Chem Soc, 2013, 135: 280

    22. [22]

      [22] Nielsen D K, Doyle A G. Angew Chem Int Ed, 2011, 50: 6056

    23. [23]

      [23] He A Y, Falck J R. J Am Chem Soc, 2010, 132: 2524

    24. [24]

      [24] Wang C, Ozaki T, Takita R, Uchiyama M. Chem Eur J, 2012, 18: 3482

    25. [25]

      [25] Oelke A J, Sun J W, Fu G C. J Am Chem Soc, 2012, 134: 2966

    26. [26]

      [26] Taylor B L H, Harris M R, Jarvo E R. Angew Chem Int Ed, 2012, 51: 7790

    27. [27]

      [27] Greene M A, Yonova I M, Williams F J, Jarvo E R. Org Lett, 2012, 14: 4293

    28. [28]

      [28] Taylor B L H, Swift E C, Waetzig J D, Jarvo E R. J Am Chem Soc, 2011, 133: 389

    29. [29]

      [29] Tamaru Y. Modern Organonickel Chemistry. Weinheim: Wiley-VCH, 2005

    30. [30]

      [30] Montgomery J. Angew Chem Int Ed, 2004, 43: 3890

    31. [31]

      [31] Tsou T T, Kochi J K. J Am Chem Soc, 1979, 101: 6319

    32. [32]

      [32] Lanni E L, McNeil A J. J Am Chem Soc, 2009, 131: 16573

    33. [33]

      [33] Liang T, Neumann C N, Ritter T. Angew Chem Int Ed, 2013, 52: 8214

    34. [34]

      [34] Lin B L, Liu L, Fu Y, Luo S W, Chen Q, Guo Q X. Organometallics, 2004, 23: 2114

    35. [35]

      [35] Breitenfeld J, Vechorkin O, Corminboeuf C, Scopelliti R, Hu X L. Organometallics, 2010, 29: 3686

    36. [36]

      [36] Jiang Y Y, Fu Y, Liu L. Sci China Chem, 2012, 55: 2057

    37. [37]

      [37] Li Z, Fu Y, Zhang S L, Guo Q X, Liu L. Chem Asian J, 2010, 5: 1475

    38. [38]

      [38] Li Z, Fu Y, Guo Q X, Liu L. Organometallics, 2008, 27: 4043

    39. [39]

      [39] Hartwig J F. Organotransition Metal Chemistry: From Bonding to Catalysis. New York: University Science Books, 2009

    40. [40]

      [40] Cornella J, Gómez-Bengoa E, Martin R. J Am Chem Soc, 2013, 135: 1997

    41. [41]

      [41] Zultanski S L, Fu G C. J Am Chem Soc, 2013, 135: 624

    42. [42]

      [42] Lin X F, Phillips D L. J Org Chem, 2008, 73: 3680

    43. [43]

      [43] Phapale V B, Guisan-Ceinos M, Bunuel E, Cardenas D J. Chem Eur J, 2009, 15: 12681

    44. [44]

      [44] Hu X L. Chem Sci, 2011, 2: 1867

    45. [45]

      [45] Jana R, Pathak T P, Sigman M S. Chem Rev, 2011, 111: 1417

    46. [46]

      [46] Saito B, Fu G C. J Am Chem Soc, 2007, 129: 9602

    47. [47]

      [47] Lu Z, Fu G C. Angew Chem Int Ed, 2010, 49: 6676

    48. [48]

      [48] Yi J, Liu J H, Liang J, Dai J J, Yang C T, Fu Y, Liu L. Adv Synth Catal, 2012, 354: 1685

    49. [49]

      [49] Li Z, Jiang Y Y, Fu Y. Chem Eur J, 2012, 18: 4345

    50. [50]

      [50] Tobisu M, Xu T, Shimasaki T, Chatani N. J Am Chem Soc, 2011, 133: 19505

    51. [51]

      [51] Lennox A J J, Lloyd-Jones G C. Angew Chem Int Ed, 2013, 52: 7362

    52. [52]

      [52] Liu L, Zhang S Y, Chen H, Lü Y, Zhu J, Zhao Y F. Chem Asian J, 2013, 8: 2592

    53. [53]

      [53] Gerber R, Frech C M. Chem Eur J, 2011, 17: 11893

    54. [54]

      [54] Tsou T T, Kochi J K. J Am Chem Soc, 1979, 101: 7547

    55. [55]

      [55] Morrell D G, Kochi J K. J Am Chem Soc, 1975, 97: 7262

    56. [56]

      [56] Dubinina G G, Brennessel W W, Miller J L, Vicic D A. Organometallics, 2008, 27: 3933

    57. [57]

      [57] Huang C Y, Doyle A G. J Am Chem Soc, 2012, 134: 9541

    58. [58]

      [58] Lin B L, Clough C R, Hillhouse G L. J Am Chem Soc, 2002, 124: 2890

    59. [59]

      [59] Ney J E, Wolfe J P. J Am Chem Soc, 2006, 128: 15415

    60. [60]

      [60] Sontag S K, Bilbrey J A, Huddleston N E, Sheppard G R, Allen W D, Locklin J. J Org Chem, 2014, 79: 1836

    61. [61]

      [61] Page M J, Lu W Y, Poulten R C, Carter E, Algarra A G, Kariuki B M, MacGregor S A, Mahon M F, Cavell K J, Murphy D M, Whittlesey M K. Chem Eur J, 2013, 19: 2158

    62. [62]

      [62] Breitenfeld J, Ruiz J, Wodrich M D, Hu X L. J Am Chem Soc, 2013, 135: 12004

    63. [63]

      [63] Zheng B, Tang F Z, Luo J, Schultz J W, Rath N P, Mirica L M. J Am Chem Soc, 2014, 136: 6499

    64. [64]

      [64] Harris M R, Konev M O, Jarvo E R. J Am Chem Soc, 2014, 136: 7825

    65. [65]

      [65] Gallego D, Brück A, Irran E, Meier F, Kaupp M, Driess M, Hartwig J F. J Am Chem Soc, 2013, 135: 15617

    66. [66]

      [66] Yi J, Lu X, Sun Y Y, Xiao B, Liu L. Angew Chem Int Ed, 2013, 52: 12409

    67. [67]

      [67] Amaike K, Muto K, Yamaguchi J, Itami K. J Am Chem Soc, 2012, 134: 13573

    68. [68]

      [68] Muto K, Yamaguchi J, Itami K. J Am Chem Soc, 2012, 134: 169

    69. [69]

      [69] Hong X, Liang Y, Houk K N. J Am Chem Soc, 2014, 136: 2017

    70. [70]

      [70] Lu Q Q, Yu H Z, Fu Y. J Am Chem Soc, 2014, 136: 8252

    71. [71]

      [71] Nakao Y, Takeda M, Matsumoto T, Hiyama T. Angew Chem Int Ed, 2010, 49: 4447

    72. [72]

      [72] Jiang Y Y, Li Z, Shi J. Organometallics, 2012, 31: 4356

    73. [73]

      [73] Biswas S, Weix D J. J Am Chem Soc, 2013, 135: 16192

  • 加载中
    1. [1]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    2. [2]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    3. [3]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    4. [4]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    5. [5]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    6. [6]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    7. [7]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    8. [8]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    9. [9]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    10. [10]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    11. [11]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    12. [12]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    13. [13]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    14. [14]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    15. [15]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    16. [16]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    17. [17]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    18. [18]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    19. [19]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    20. [20]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

Metrics
  • PDF Downloads(171)
  • Abstract views(802)
  • HTML views(161)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return