Citation:
Zhe Li, Lei Liu. Recent advances in mechanistic studies on Ni catalyzed cross-coupling reactions[J]. Chinese Journal of Catalysis,
;2015, 36(1): 3-14.
doi:
10.1016/S1872-2067(14)60217-5
-
A variety of Ni catalyzed cross-coupling reactions have emerged as efficient new methods for the construction of C-C bonds, and many mechanistic studies have been conducted to understand the factors controlling the reactivity and selectivity of Ni catalyzed reactions. The mechanisms of Ni catalyzed reactions are often very different from the corresponding Pd catalyzed processes because radical or bimetallic pathways are frequently involved in Ni catalyzed cross-coupling reactions. This review summarized recent advances in the mechanism of Ni catalyzed cross-coupling reactions. These are important for the development of new Ni catalyzed cross-coupling reactions with improved efficiency and selectivity.
-
Keywords:
- Nickel,
- Homogeneous catalysis,
- Cross-coupling,
- C-C bond formation,
- Mechanism
-
-
-
[1]
[1] Corbet J P, Mignani G. Chem Rev, 2006, 106: 2651
-
[2]
[2] Magano J, Dunetz J R. Chem Rev, 2011, 111: 2177
-
[3]
[3] Cai S F, Wang D S, Niu Z Q, Li Y D. Chin J Catal (蔡双飞, 王定胜, 牛志强, 李亚栋. 催化学报), 2013, 34: 1964
-
[4]
[4] Torborg C, Beller M. Adv Synth Catal, 2009, 351: 3027
-
[5]
[5] Nicolaou K C, Bulger P G, Sarlah D. Angew Chem Int Ed, 2005, 44: 4442
-
[6]
[6] Wang Y F, Deng W, Liu L, Guo Q X. Chin J Org Chem (有机化学), 2005, 25: 8
-
[7]
[7] Li Z, Fu Y, Liu L, Guo Q X. Chin J Org Chem (有机化学), 2005, 25: 1508
-
[8]
[8] Rosen B M, Quasdorf K W, Wilson D A, Zhang N, Resmerita A M, Garg N K, Percec V. Chem Rev, 2011, 111: 1346
-
[9]
[9] Jana R, Pathak T P, Sigman M S. Chem Rev, 2011, 111: 1417
-
[10]
[10] Tasker S Z, Standley E A, Jamison T F. Nature, 2014, 509: 299
-
[11]
[11] Guan B T, Wang Y, Li B J, Yu D G, Shi Z J. J Am Chem Soc, 2008, 130: 14468
-
[12]
[12] Ke H H, Chen X F, Feng Y Y, Zou G. Sci China Chem, 2014, 57: 1126
-
[13]
[13] Li Z, Zhang S L, Fu Y, Guo Q X, Liu L. J Am Chem Soc, 2009, 131: 8815
-
[14]
[14] Zhou J, Fu G C. J Am Chem Soc, 2003, 125: 14726
-
[15]
[15] Zhou J, Fu G C. J Am Chem Soc, 2004, 126: 1340
-
[16]
[16] Powell D A, Fu G C. J Am Chem Soc, 2004, 126: 7788
-
[17]
[17] Csok Z, Vechorkin O, Harkins S B, Scopelliti R, Hu X L. J Am Chem Soc, 2008, 130: 8156
-
[18]
[18] Zhou Q, Srinivas H D, Dasgupta S, Watson M P. J Am Chem Soc, 2013, 135: 3307
-
[19]
[19] Harris M R, Hanna L E, Greene M A, Moore C E, Jarvo E R. J Am Chem Soc, 2013, 135: 3303
-
[20]
[20] Sylvester K T, Wu K, Doyle A G. J Am Chem Soc, 2012, 134: 16967
-
[21]
[21] Maity P, Shacklady-McAtee D M, Yap G P A, Sirianni E R, Watson M P. J Am Chem Soc, 2013, 135: 280
-
[22]
[22] Nielsen D K, Doyle A G. Angew Chem Int Ed, 2011, 50: 6056
-
[23]
[23] He A Y, Falck J R. J Am Chem Soc, 2010, 132: 2524
-
[24]
[24] Wang C, Ozaki T, Takita R, Uchiyama M. Chem Eur J, 2012, 18: 3482
-
[25]
[25] Oelke A J, Sun J W, Fu G C. J Am Chem Soc, 2012, 134: 2966
-
[26]
[26] Taylor B L H, Harris M R, Jarvo E R. Angew Chem Int Ed, 2012, 51: 7790
-
[27]
[27] Greene M A, Yonova I M, Williams F J, Jarvo E R. Org Lett, 2012, 14: 4293
-
[28]
[28] Taylor B L H, Swift E C, Waetzig J D, Jarvo E R. J Am Chem Soc, 2011, 133: 389
-
[29]
[29] Tamaru Y. Modern Organonickel Chemistry. Weinheim: Wiley-VCH, 2005
-
[30]
[30] Montgomery J. Angew Chem Int Ed, 2004, 43: 3890
-
[31]
[31] Tsou T T, Kochi J K. J Am Chem Soc, 1979, 101: 6319
-
[32]
[32] Lanni E L, McNeil A J. J Am Chem Soc, 2009, 131: 16573
-
[33]
[33] Liang T, Neumann C N, Ritter T. Angew Chem Int Ed, 2013, 52: 8214
-
[34]
[34] Lin B L, Liu L, Fu Y, Luo S W, Chen Q, Guo Q X. Organometallics, 2004, 23: 2114
-
[35]
[35] Breitenfeld J, Vechorkin O, Corminboeuf C, Scopelliti R, Hu X L. Organometallics, 2010, 29: 3686
-
[36]
[36] Jiang Y Y, Fu Y, Liu L. Sci China Chem, 2012, 55: 2057
-
[37]
[37] Li Z, Fu Y, Zhang S L, Guo Q X, Liu L. Chem Asian J, 2010, 5: 1475
-
[38]
[38] Li Z, Fu Y, Guo Q X, Liu L. Organometallics, 2008, 27: 4043
-
[39]
[39] Hartwig J F. Organotransition Metal Chemistry: From Bonding to Catalysis. New York: University Science Books, 2009
-
[40]
[40] Cornella J, Gómez-Bengoa E, Martin R. J Am Chem Soc, 2013, 135: 1997
-
[41]
[41] Zultanski S L, Fu G C. J Am Chem Soc, 2013, 135: 624
-
[42]
[42] Lin X F, Phillips D L. J Org Chem, 2008, 73: 3680
-
[43]
[43] Phapale V B, Guisan-Ceinos M, Bunuel E, Cardenas D J. Chem Eur J, 2009, 15: 12681
-
[44]
[44] Hu X L. Chem Sci, 2011, 2: 1867
-
[45]
[45] Jana R, Pathak T P, Sigman M S. Chem Rev, 2011, 111: 1417
-
[46]
[46] Saito B, Fu G C. J Am Chem Soc, 2007, 129: 9602
-
[47]
[47] Lu Z, Fu G C. Angew Chem Int Ed, 2010, 49: 6676
-
[48]
[48] Yi J, Liu J H, Liang J, Dai J J, Yang C T, Fu Y, Liu L. Adv Synth Catal, 2012, 354: 1685
-
[49]
[49] Li Z, Jiang Y Y, Fu Y. Chem Eur J, 2012, 18: 4345
-
[50]
[50] Tobisu M, Xu T, Shimasaki T, Chatani N. J Am Chem Soc, 2011, 133: 19505
-
[51]
[51] Lennox A J J, Lloyd-Jones G C. Angew Chem Int Ed, 2013, 52: 7362
-
[52]
[52] Liu L, Zhang S Y, Chen H, Lü Y, Zhu J, Zhao Y F. Chem Asian J, 2013, 8: 2592
-
[53]
[53] Gerber R, Frech C M. Chem Eur J, 2011, 17: 11893
-
[54]
[54] Tsou T T, Kochi J K. J Am Chem Soc, 1979, 101: 7547
-
[55]
[55] Morrell D G, Kochi J K. J Am Chem Soc, 1975, 97: 7262
-
[56]
[56] Dubinina G G, Brennessel W W, Miller J L, Vicic D A. Organometallics, 2008, 27: 3933
-
[57]
[57] Huang C Y, Doyle A G. J Am Chem Soc, 2012, 134: 9541
-
[58]
[58] Lin B L, Clough C R, Hillhouse G L. J Am Chem Soc, 2002, 124: 2890
-
[59]
[59] Ney J E, Wolfe J P. J Am Chem Soc, 2006, 128: 15415
-
[60]
[60] Sontag S K, Bilbrey J A, Huddleston N E, Sheppard G R, Allen W D, Locklin J. J Org Chem, 2014, 79: 1836
-
[61]
[61] Page M J, Lu W Y, Poulten R C, Carter E, Algarra A G, Kariuki B M, MacGregor S A, Mahon M F, Cavell K J, Murphy D M, Whittlesey M K. Chem Eur J, 2013, 19: 2158
-
[62]
[62] Breitenfeld J, Ruiz J, Wodrich M D, Hu X L. J Am Chem Soc, 2013, 135: 12004
-
[63]
[63] Zheng B, Tang F Z, Luo J, Schultz J W, Rath N P, Mirica L M. J Am Chem Soc, 2014, 136: 6499
-
[64]
[64] Harris M R, Konev M O, Jarvo E R. J Am Chem Soc, 2014, 136: 7825
-
[65]
[65] Gallego D, Brück A, Irran E, Meier F, Kaupp M, Driess M, Hartwig J F. J Am Chem Soc, 2013, 135: 15617
-
[66]
[66] Yi J, Lu X, Sun Y Y, Xiao B, Liu L. Angew Chem Int Ed, 2013, 52: 12409
-
[67]
[67] Amaike K, Muto K, Yamaguchi J, Itami K. J Am Chem Soc, 2012, 134: 13573
-
[68]
[68] Muto K, Yamaguchi J, Itami K. J Am Chem Soc, 2012, 134: 169
-
[69]
[69] Hong X, Liang Y, Houk K N. J Am Chem Soc, 2014, 136: 2017
-
[70]
[70] Lu Q Q, Yu H Z, Fu Y. J Am Chem Soc, 2014, 136: 8252
-
[71]
[71] Nakao Y, Takeda M, Matsumoto T, Hiyama T. Angew Chem Int Ed, 2010, 49: 4447
-
[72]
[72] Jiang Y Y, Li Z, Shi J. Organometallics, 2012, 31: 4356
-
[73]
[73] Biswas S, Weix D J. J Am Chem Soc, 2013, 135: 16192
-
[1]
-
-
-
[1]
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
-
[2]
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
-
[3]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[4]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[5]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[6]
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
-
[7]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[8]
Shiyi WANG , Chaolong CHEN , Xiangjian KONG , Lansun ZHENG , Lasheng LONG . Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342
-
[9]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[10]
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
-
[11]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
-
[12]
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
-
[13]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[14]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[15]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[16]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[17]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[18]
Cunling Ye , Xitong Zhao , Hongfang Wang , Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043
-
[19]
Yue Zhao , Yanfei Li , Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001
-
[20]
Hong Lu , Yidie Zhai , Xingxing Cheng , Yujia Gao , Qing Wei , Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074
-
[1]
Metrics
- PDF Downloads(171)
- Abstract views(802)
- HTML views(161)