Citation: Juxia Li, Weili Dai, Junqing Yan, Guangjun Wu, Landong Li, Naijia Guan. Hydrothermal synthesis and photocatalytic properties of tantalum pentoxide nanorods[J]. Chinese Journal of Catalysis, ;2015, 36(3): 432-438. doi: 10.1016/S1872-2067(14)60215-1 shu

Hydrothermal synthesis and photocatalytic properties of tantalum pentoxide nanorods

  • Corresponding author: Weili Dai,  Naijia Guan, 
  • Received Date: 24 July 2014
    Available Online: 29 August 2014

    Fund Project:

  • Tantalum pentoxide (Ta2O5) nanorods were hydrothermally synthesized using polyethylene glycol (PEG) as a guiding agent. The nanorods were characterized by X-ray diffraction, scanning and transmission electron microscopies, and diffuse reflectance ultraviolet-visible and photoluminescence spectroscopies. The effects of crystallization duration and Ta2O5/Sr(OH)2 ratio on the product morphology were investigated, and a growth mechanism was proposed. Phase-pure Ta2O5 nanorods with controlled morphology were formed in the presence of PEG and Sr(OH)2, which was necessary to form the nanorods. Sr(OH)2 induced the surface dissolution and re-growth of Ta2O5. PEG induced the anisotropic growth of Ta2O5 by acting as a capping agent. The products were used to photocatalytically degrade rhodamine B under ultraviolet irradiation. The catalytic activity directly correlated with the length-diameter ratio of the Ta2O5 nanorods. A maximum apparent reaction rate constant of 0.156 min-1 was obtained. The Ta2O5 nanorods were stable during photocatalytic reaction and could be recycled several times without loss of activity.
  • 加载中
    1. [1]

      [1] Li X, Zang J L. J Phys Chem C, 2009, 113: 19411

    2. [2]

      [2] Hoffmann M R, Martin S T, Choi W, Bahnemann D W. Chem Rev, 1995, 95: 69

    3. [3]

      [3] Khan S U M, Al-Shahry M, Ingler W B Jr. Science, 2002, 297: 2243

    4. [4]

      [4] Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, Domen K. Nature, 2006, 440: 295

    5. [5]

      [5] Chueh Y L, Chou L J, Wang Z L. Angew Chem Int Ed, 2006, 45: 7773

    6. [6]

      [6] Zhang J Y, Bie L J, Dusastre V, Boyd I W. Thin Solid Films, 1998, 318: 252

    7. [7]

      [7] Ezhilvalavan S, Tseng T Y. J Mater Sci Mater Electron, 1999, 10: 9

    8. [8]

      [8] Zhu Y F, Yu F, Man Y, Tian Q Y, He Y, Wu N Z. J Solid State Chem, 2005, 178: 224

    9. [9]

      [9] Li P, Stender C L, Ringe E, Marks L D, Odom T W. Small, 2010, 6: 1096

    10. [10]

      [10] Wang Y, Cui Z L, Zhang Z K. Mater Lett, 2004, 58: 3017

    11. [11]

      [11] Pyatenko A, Yamaguchi M, Suzuki M. J Phys Chem C, 2007, 111: 7910

    12. [12]

      [12] Jia C J, Sun L D, You L P, Jiang X C, Luo F, Pang Y C, Yan C H. J Phys Chem B, 2005, 109: 3284

    13. [13]

      [13] Chen D H, Huang F Z, Cheng Y B, Caruso R A. Adv Mater, 2009, 21: 2206

    14. [14]

      [14] Peng X G, Manna L, Yang W D, Wickham J, Scher E, Kadavanich A, Alivisatos A P. Nature, 2000, 404: 59

    15. [15]

      [15] Morales A M, Lieber C M. Science, 1998, 279: 208

    16. [16]

      [16] Manna L, Scher E C, Alivisatos A P. J Am Chem Soc, 2000, 122: 12700

    17. [17]

      [17] Holmes J D, Johnston K P, Doty R C, Korgel B A. Science, 2000, 287: 1471

    18. [18]

      [18] Gudiksen M S, Lieber C M. J Am Chem Soc, 2000, 122: 8801

    19. [19]

      [19] Park S J, Kim S, Lee S, Khim Z G, Char K, Hyeon T. J Am Chem Soc, 2000, 122: 8581

    20. [20]

      [20] Puntes V F, Krishnan K M, Alivisatos A P. Science, 2001, 291: 2115

    21. [21]

      [21] Thurn-Albrecht T, Schotter J, Kästle G A, Emley N, Shibauchi T, Krusin-Elbaum L, Guarini K, Black C T, Tuominen M T, Russell T P. Science, 2000, 290: 2126

    22. [22]

      [22] Huang M H, Wu Y Y, Feick H, Tran N, Weber E, Yang P D. Adv Mater, 2001, 13: 113

    23. [23]

      [23] Lei Y, Zhang L D, Fan J C. Chem Phys Lett, 2001, 338: 231

    24. [24]

      [24] Urban J J, Yun W S, Gu Q, Park H. J Am Chem Soc, 2002, 124: 1186

    25. [25]

      [25] Ndiege N, Wilhoite T, Subramanian V, Shannon M A, Masel R I. Chem Mater, 2007, 19: 3155

    26. [26]

      [26] Baruwati B, Varma R S. Cryst Growth Des, 2010, 10: 3424

    27. [27]

      [27] Lü X J, Ding S J, Lin T Q, Mou X L, Hong Z L, Huang F Q. Dalton Trans, 2012, 41: 622

    28. [28]

      [28] Duan J Y, Shi W D, Xu L L, Mou G Y, Xin Q L, Guan J G. Chem Commun, 2012, 48: 7301

    29. [29]

      [29] Gömpel D, Tahir M N, Panthöfer M, Mugnaioli E, Brandscheid R, Kolb U, Tremel W. J Mater Chem A, 2014, 2: 8033

    30. [30]

      [30] Kominami H, Miyakawa M, Murakami S, Yasuda T, Kohno M, Onoue S, Kera Y, Ohtani B. Phys Chem Chem Phys, 2001, 3: 2697

    31. [31]

      [31] Buha J, Arcon D, Niederberger M, Djerdj I. Phys Chem Chem Phys, 2010, 12: 15537

    32. [32]

      [32] Devan R S, Ho W D, Lin J H, Wu S Y, Ma Y R, Lee P C, Liou Y. Cryst Growth Des, 2008, 8: 4465

    33. [33]

      [33] Oh M H, Lee N, Kim H, Park S P, Piao Y Z, Lee J, Jun S W, Moon W K, Choi S H, Hyeon T. J Am Chem Soc, 2011, 133: 5508

    34. [34]

      [34] Bonitatibus P J Jr, Torres A S, Goddard G D, Fitzgerald P F, Kulkarni A M. Chem Commun, 2010, 46: 8956

    35. [35]

      [35] Yu S H, Liu B, Mo M S, Huang J H, Liu X M, Qian Y T. Adv Funct Mater, 2003, 13: 639

    36. [36]

      [36] Hu Y M, Gu H S, Hu Z L, Di W N, Yuan Y, You J, Cao W Q, Wang Y, Chan H L W. Cryst Growth Des, 2008, 8: 832

    37. [37]

      [37] Xu T G, Zhao X, Zhu Y F. J Phys Chem B, 2006, 110: 25825

    38. [38]

      [38] Zhou C, Chen G, Li Y X, Zhang H J, Pei J. Int J Hydrogen Energy, 2009, 34: 2113

    39. [39]

      [39] Liu J W, Chen G, Li Z H, Zhang Z G. Int J Hydrogen Energy, 2007, 32: 2269

    40. [40]

      [40] Li Y X, Chen S, He H Q, Zhang Y, Wang C Y. ACS Appl Mater Interfaces, 2013, 5: 10260

    41. [41]

      [41] Bîrdeanu M, Bîrdeanu A V, Gruia A S, Fagadar-Cosma E, Avram C N. J Alloys Compd, 2013, 573: 53

    42. [42]

      [42] Zhuravleva E Y. Inorg Mater, 2004, 40: 671

    43. [43]

      [43] Li Z S, Yu T, Zou Z G, Ye J H. Appl Phys Lett, 2006, 88: 071917

    44. [44]

      [44] Maeda K, Domen K. J Phys Chem C, 2007, 111: 7851

    45. [45]

      [45] Liu X M, Zhou Y C. J Cryst Growth, 2004, 270: 527

    46. [46]

      [46] Zhang D S, Fu H X, Shi L Y, Pan C S, Li Q, Chu Y L, Yu W J. Inorg Chem, 2007, 46: 2446

    47. [47]

      [47] Kim S, Choi W. J Phys Chem B, 2005, 109: 5143

  • 加载中
    1. [1]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    2. [2]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    3. [3]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    4. [4]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    5. [5]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    8. [8]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    9. [9]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    10. [10]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    11. [11]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    12. [12]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    13. [13]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    16. [16]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    17. [17]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    18. [18]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

Metrics
  • PDF Downloads(0)
  • Abstract views(326)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return