Citation: Xiaojing Hu, Yukun Shi, Baolin Zhu, Shoumin Zhang, Weiping Huang. Highly photostable palladium-loaded TiO2 nanotubes and the active species in the photodegradation of methyl orange[J]. Chinese Journal of Catalysis, ;2015, 36(2): 221-228. doi: 10.1016/S1872-2067(14)60213-8 shu

Highly photostable palladium-loaded TiO2 nanotubes and the active species in the photodegradation of methyl orange

  • Corresponding author: Baolin Zhu,  Weiping Huang, 
  • Received Date: 4 July 2014
    Available Online: 18 August 2014

    Fund Project: 国家自然科学基金(21373120, 21301098, 21071086, 21271110) (21373120, 21301098, 21071086, 21271110) 111工程(B12015) (B12015) 天津市应用基础研究基金(12JCYBJC13100) (12JCYBJC13100) 天津市自然科学基金(13JCQNJC02000). (13JCQNJC02000)

  • Highly photostable palladium-loaded TiO2 nanotubes (Pd/TNTs) were prepared by a simple photo-decomposition method and characterized by inductively coupled plasma, X-ray diffraction, UV-visible light diffuse reflectance spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), photoluminescence spectroscopy, N2 adsorption-desorption, and photocurrent measurement. TEM images showed that the samples had a tubular structure. XPS results revealed that most of the palladium was present as Pd0. The photocatalytic performance was evaluated by monitoring the catalytic activity for the degradation of methyl orange solution under both UV and simulated sunlight irradiation. Pd/TNTs with 0.3 wt% Pd displayed higher activity than P25. The active species in the photocatalytic process were investigated by using different types of active species scavengers. hvb+ was the major reactive species in the photodegradation over the Pd/TNTs.
  • 加载中
    1. [1]

      [1] Xiang Q J, Yu J G, Jaroniec M. J Am Chem Soc, 2012, 134: 6575

    2. [2]

      [2] Ghasemi S, Setayesh S R, Habibi-Yangjeh A, Hormozi-Nezhad M R, Gholami M R. J Hazard Mater, 2012, 199-200: 170

    3. [3]

      [3] Li X, Liu H L, Luo D L, Li J T, Huang Y, Li H L, Fang Y P, Xu Y H, Zhu L. Chem Eng J, 2012, 180: 151

    4. [4]

      [4] Dholam R, Patel N, Adami M, Miotello A. Int J Hydrogen Energy, 2009, 34: 5337

    5. [5]

      [5] Wang G M, Wang H Y, Ling Y C, Tang Y C, Yang X Y, Fitzmorris R C, Wang C C, Zhang J Z, Li Y. Nano Lett, 2011, 11: 3026

    6. [6]

      [6] Grandcolas M, Cottineau T, Louvet A, Keller N, Keller V. Appl Catal B, 2013, 138-139: 128

    7. [7]

      [7] Mahlambi M M, Mishra A K, Mishra S B, Krause R W, Mamba B B, Raichur A M. Ind Eng Chem Res, 2013, 52: 1783

    8. [8]

      [8] Jiao Y C, Zhu M F, Chen F, Zhang J L. Chin J Catal (焦艳超, 朱明峰, 陈锋, 张金龙. 催化学报), 2013, 34: 585

    9. [9]

      [9] Tryba B, Morawski A W, Inagaki M. Appl Catal B, 2003, 46: 203

    10. [10]

      [10] Shang X L, Li B, Li C H, Wang X, Zhang T Y, Jiang S. Dyes Pigments, 2013, 98: 358

    11. [11]

      [11] Zhou X S, Jin B, Li L D, Peng F, Wang H J, Yu H, Fang Y P. J Mater Chem, 2012, 22: 17900

    12. [12]

      [12] He F, Ma F, Li T, Li G X. Chin J Catal (何霏, 马芳, 李涛, 李光兴. 催化学报), 2013, 34: 2263

    13. [13]

      [13] Hensel J, Wang G M, Li Y, Zhang J Z. Nano Lett, 2010, 10: 478

    14. [14]

      [14] Yu J G, Xiang Q J, Zhou M H. Appl Catal B, 2009, 90: 595

    15. [15]

      [15] Doh S J, Kim C, Lee S G, Lee S J, Kim H. J Hazard Mater, 2008, 154: 118

    16. [16]

      [16] Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K. Langmuir, 1998, 14: 3160

    17. [17]

      [17] Zhang M, Jin Z S, Zhang J W, Guo X Y, Yang J J, Li W, Wang X D, Zhang Z J. J Mol Catal A, 2004, 217: 203

    18. [18]

      [18] Zhu B L, Li K R, Feng Y F, Zhang S M, Wu S H, Huang W P. Catal Lett, 2007, 118: 55

    19. [19]

      [19] Zhu B L, Li K R, Zhou J, Wang S R, Zhang S M, Wu S H, Huang W P. Catal Commun, 2008, 9: 2323

    20. [20]

      [20] Lei G. Mater Chem Phys, 2008, 107: 465

    21. [21]

      [21] Zhang N, Liu S Q, Fu X Z, Xu Y J. J Mater Chem, 2012, 22: 5042

    22. [22]

      [22] Mohapatra S K, Kondamudi N, Banerjee S, Misra M. Langmuir, 2008, 24: 11276

    23. [23]

      [23] Chang Y G, Xu J, Zhang Y Y, Ma S Y, Xin L H, Zhu L N, Xu C T. J Phys Chem C, 2009, 113: 18761

    24. [24]

      [24] An H Q, Zhu B L, Li J X, Zhou J, Wang S R, Zhang S M, Wu S H, Huang W P. J Phys Chem C, 2008, 112: 18772

    25. [25]

      [25] Yu X L, Wang Y, Meng X J, Yang J J. Chin J Catal (于新娈, 王岩, 孟祥江, 杨建军. 催化学报), 2013, 34: 1418

    26. [26]

      [26] Nkambule T I, Kuvarega A T, Krause R W M, Haarhoff J, Mamba B B. Environ Sci Pollut Res, 2012, 19: 4120

    27. [27]

      [27] An H Q, Zhou J, Li J X, Zhu B L, Wang S R, Zhang S M, Wu S H, Huang W P. Catal Commun, 2009, 11: 175

    28. [28]

      [28] Chang C, Fu Y, Hu M, Wang C Y, Shan G Q, Zhu L Y. Appl Catal B, 2013, 142-143: 553

    29. [29]

      [29] Cao J, Luo B D, Lin H L, Xu B Y, Chen S F. Appl Catal B, 2012, 111-112: 288

    30. [30]

      [30] Li W J, Li D Z, Lin Y M, Wang P X, Chen W, Fu X Z, Shao Y. J Phys Chem C, 2012, 116: 3552

    31. [31]

      [31] Li X D, Gao C T, Wang J T, Lu B G, Chen W J, Song J, Zhang S S, Zhang Z X, Pan X J, Xie E Q. J Power Sources, 2012, 214: 244

    32. [32]

      [32] Liu B T, Peng L L. J Alloys Comp, 2013, 571: 145

    33. [33]

      [33] Ye M D, Gong J J, Lai Y K, Lin C J, Lin Z Q. J Am Chem Soc, 2012, 134: 15720

    34. [34]

      [34] Song J J, Zhu B L, Zhao W L, Hu X J, Shi Y K, Huang W P. J Nanopart Res, 2013, 15: 1494

    35. [35]

      [35] Talebian A, Entezari M H, Ghows N. Chem Eng J, 2013, 229: 304

    36. [36]

      [36] Lin Y M, Li D Z, Hu J H, Xiao G C, Wang J X, Li W J, Fu X Z. J Phys Chem C, 2012, 116: 5764

    37. [37]

      [37] Chen Y M, Lu A H, Li Y, Zhang L S, Yip H Y, Zhao H J, An T C, Wong P K. Environ Sci Technol, 2011, 45: 5689

    38. [38]

      [38] An T C, An J B, Yang H, Li G Y, Feng H X, Nie X P. J Hazard Mater, 2011, 197: 229

    39. [39]

      [39] Zhou W J, Guan Y, Wang D Z, Zhang X H, Liu D, Jiang H D, Wang J Y, Liu X G, Liu H, Chen S W. Chem Asian J, 2014, 9: 1648

    40. [40]

      [40] Yu J G, Low J X, Xiao W, Zhou P, Jaroniec M. J Am Chem Soc, 2014, 136: 8839

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    3. [3]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    4. [4]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    5. [5]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    6. [6]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    8. [8]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    9. [9]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    10. [10]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    11. [11]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    12. [12]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    13. [13]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    14. [14]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    15. [15]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    16. [16]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    17. [17]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    18. [18]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    19. [19]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    20. [20]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

Metrics
  • PDF Downloads(261)
  • Abstract views(549)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return