Citation: Sharifah Bee Abd Hamid, Tong Ling Tan, Chin Wei Lai, Emy Marlina Samsudin. Multiwalled carbon nanotube/TiO2 nanocomposite as a highly active photocatalyst for photodegradation of Reactive Black 5 dye[J]. Chinese Journal of Catalysis, ;2014, 35(12): 2014-2019. doi: 10.1016/S1872-2067(14)60210-2 shu

Multiwalled carbon nanotube/TiO2 nanocomposite as a highly active photocatalyst for photodegradation of Reactive Black 5 dye

  • Corresponding author: Sharifah Bee Abd Hamid, 
  • Received Date: 11 June 2014
    Available Online: 20 August 2014

  • A nanocomposite UV-visible light-responsive multiwalled carbon nanotube (MWCNT)/titanium dioxide (TiO2) nanophotocatalyst was successfully synthesized by a modified sol-gel method using titanium isopropoxide and functionalized MWCNTs as the starting precursors. The photocatalytic activity of the TiO2 and the nanohybrid material was investigated through the photodegradation of Reactive Black 5 dye under ultraviolet light irradiation. X-ray diffraction analysis indicated that anatase phase was obtained for both the pure TiO2 and the MWCNT/TiO2 composite, while Raman spectroscopy confirmed the presence of MWCNTs in the composite. Field emission scanning electron microscopy revealed that TiO2 nanoparticles with an individual diameter of about 10-20 nm were coated on the surface of the MWCNTs. The specific surface areas of the samples were found to be 80 and 181 m2/g for the pure TiO2 and MWCNT/TiO2, respectively. As a result, MWCNT/TiO2 showed better photocatalytic performance than pure TiO2 because the high surface area of MWCNTs enabled them to function as good electron acceptors for the retardation of electron-hole pair recombination.
  • 加载中
    1. [1]

      [1] Chen M L, Oh W C. Int J Photoenergy, 2010, 2010: Article ID 264831

    2. [2]

      [2] Teh C M, Mohamed A R. J Alloy Compd, 2011, 509: 1648

    3. [3]

      [3] Chen Y F, Lee C Y, Yeng M Y, Chiu H T. J Cryst Growth, 2003, 247: 363

    4. [4]

      [4] Gupta S M, Tripathi M. Chin Sci Bull, 2011, 56: 1639

    5. [5]

      [5] Jiang G H, Zheng X Y, Wang Y, Li T W, Sun X K. Powder Technol, 2011, 207: 465

    6. [6]

      [6] Pelaez M, Nolan N T, Pillai S C, Seery M K, Falaras P, Kontos A G, Dunlop P S M, Hamilton J W J, Byrne J A, O'Shea K, Entezari M H, Dionysiou D D. Appl Catal B, 2012, 125: 331

    7. [7]

      [7] Ashkarran A A, Fakhari M, Mahmoudi M. RSC Adv, 2013, 3: 18529

    8. [8]

      [8] Tseng T K, Lin Y S, Chen Y J, Chu H. Int J Mol Sci, 2010, 11: 2336

    9. [9]

      [9] Luo Y S, Liu J P, Xia X H, Li X Q, Fang T, Li S Q, Ren Q F, Li J L, Jia Z J. Mater Lett, 2007, 61: 2467

    10. [10]

      [10] Tseng Y H, Yen C Y, Yen M Y, Ma C C M. Micro Nano Lett, 2010, 5: 1

    11. [11]

      [11] Gao B, Peng C, Chen G Z, Puma G L. Appl Catal B, 2008, 85: 17

    12. [12]

      [12] Moraes F C, Cabral M F, Mascaro L H, Machado S A S. Surf Sci, 2011, 605: 435

    13. [13]

      [13] Wu C H, Kuo C Y, Chen S T. Environ Technol, 2013, 34: 2513

    14. [14]

      [14] Wang H, Wang H L, Jiang W F, Li Z Q. Water Res, 2009, 43: 204

    15. [15]

      [15] Xie Y, Heo S H, Yoo S H, Ali G, Cho S O. Nanoscale Res Lett, 2010, 5: 603

    16. [16]

      [16] Leary R, Westwood A. Carbon, 2011, 49: 741

    17. [17]

      [17] Abdel Salam M. Arabian J Chem, 2012, 5: 291

    18. [18]

      [18] Liu B, Zeng H C. Chem Mater, 2008, 20: 2711

    19. [19]

      [19] Yan X B, Tay B K, Yang Y. J Phys Chem B, 2006, 110: 25844

    20. [20]

      [20] Zhang F J, Liu J, Chen M L, Oh W C. J Korean Ceram Soc, 2009, 46: 263

    21. [21]

      [21] Aazam E S. Ceram Int, 2014, 40: 6705

    22. [22]

      [22] An H, Cui H, Zhao D D, Tao D J, Li B J, Zhai J P, Li Q. Electrochim Acta, 2013, 92: 176

    23. [23]

      [23] An Y, Yang L, Hou J, Liu Z Y, Peng B H. Opt Mater, 2014, 36: 1390

    24. [24]

      [24] Da Dalt S, Alves A K, Bergmann C P. Mater Res Bull, 2013, 48: 1845

    25. [25]

      [25] de Morais A, Loiola L M D, Benedetti J E, Gonçalves A S, Avellaneda C A O, Clerici J H, Cotta M A, Nogueira A F. J Photochem Photobiol A, 2013, 251: 78

    26. [26]

      [26] Djokic V R, Marinkovic A D, Ersen O, Uskokovic P S, Petrovic R D, Radmilovic V R, Janackovic D T. Ceram Int, 2014, 40: 4009

    27. [27]

      [27] Gui M M, Chai S P, Xu B Q, Mohamed A R. Sol Energy Mater Sol Cells, 2014, 122: 183

    28. [28]

      [28] Liu H, Zhang H R, Yang H W. Chin J Catal (刘浩, 张海茹, 杨宏旻. 催化学报), 2014, 35: 66

    29. [29]

      [29] Haji Jumali M H, Mohamad Alosfur F K, Radiman S, Ridha N J, Yarmo M A, Umar A A. Mater Sci Semicond Process, 2014, 25: 207

    30. [30]

      [30] Tan L L, Ong W J, Chai S P, Mohamed A R. Nanoscale Res Lett, 2013, 8: 465

    31. [31]

      [31] Zhu L, Meng Z D, Oh W C. J Nanomater, 2012, 2012: Article ID 586526

    32. [32]

      [32] Hintsho N, Petrik L, Nechaev A, Titinchi S, Ndungu P. Appl Catal B, 2014, 156-157: 273

    33. [33]

      [33] Liu C W, Chen H B, Dai K, Xue A F, Chen H, Huang Q Y. Mater Res Bull, 2013, 48: 1499

  • 加载中
    1. [1]

      Haijing CuiWeihao ZhuChuning YueMing YangWenzhi RenAiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727

    2. [2]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    3. [3]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    4. [4]

      Ming-Yi SunLu ZhangYa LiChong-Chen WangPeng WangXueying RenXiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035

    5. [5]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    6. [6]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    7. [7]

      Shehla KhalidMuhammad BilalNasir RasoolMuhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498

    8. [8]

      Bingke ZhangDongbo WangJiamu CaoWen HeGang LiuDonghao LiuChenchen ZhaoJingwen PanSihang LiuWeifeng ZhangXuan FangLiancheng ZhaoJinzhong Wang . Tuning Stark effect by defect engineering on black titanium dioxide mesoporous spheres for enhanced hydrogen evolution. Chinese Chemical Letters, 2024, 35(11): 110254-. doi: 10.1016/j.cclet.2024.110254

    9. [9]

      Yuhao MaYufei ZhouMingchuan YuCheng FangShaoxia YangJunfeng Niu . Covalently bonded ternary photocatalyst comprising MoSe2/black phosphorus nanosheet/graphitic carbon nitride for efficient moxifloxacin degradation. Chinese Chemical Letters, 2024, 35(9): 109453-. doi: 10.1016/j.cclet.2023.109453

    10. [10]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    11. [11]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    12. [12]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    13. [13]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    14. [14]

      Yuchen ZhangLifeng DingZhenghe XieXin ZhangXiaofeng SuiJian-Rong Li . Porous sorbents for direct capture of carbon dioxide from ambient air. Chinese Chemical Letters, 2025, 36(3): 109676-. doi: 10.1016/j.cclet.2024.109676

    15. [15]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    16. [16]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    17. [17]

      Ke ZhangYajing WeiLinhua XieSha KangFei LiChuanyi Wang . Amorphous titanium carbide on N-defective g-C3N5 for high-efficiency photocatalytic NO removal. Chinese Chemical Letters, 2025, 36(3): 110086-. doi: 10.1016/j.cclet.2024.110086

    18. [18]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    19. [19]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    20. [20]

      Xiaxia XingXiaoyu ChenZhenxu LiXinhua ZhaoYingying TianXiaoyan LangDachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230

Metrics
  • PDF Downloads(0)
  • Abstract views(296)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return