Citation: Wan-Kuen Jo, Rajesh J. Tayade. Recent developments in photocatalytic dye degradation upon irradiation with energy-efficient light emitting diodes[J]. Chinese Journal of Catalysis, ;2014, 35(11): 1781-1792. doi: 10.1016/S1872-2067(14)60205-9 shu

Recent developments in photocatalytic dye degradation upon irradiation with energy-efficient light emitting diodes

  • Corresponding author: Rajesh J. Tayade, 
  • Received Date: 15 June 2014
    Available Online: 24 July 2014

  • Light emitting diodes (LEDs) are gaining recognition as a convenient and energy-efficient light source for photocatalytic application. This review focuses on recent progress in the research and development of the degradation of dyes in water under LED light irradiation and provides a brief overview of photocatalysis, details of the LEDs commonly employed, a discussion of the advantages of LEDs over traditional ultraviolet sources and their application to photocatalytic dye degradation. We also discuss the experimental conditions used, the reported mechanisms of dye degradation and the various photocatalytic reactor designs and pay attention to the different types of LEDs used, and their power consumption. Based on a literature survey, the feasibility, benefits, limitations, and future prospects of LEDs for use in photocatalytic dye degradation are discussed in detail.
  • 加载中
    1. [1]

      [1] Gaya U I, Abdullah A H. J Photochem Photobiol C, 2008, 9: 1

    2. [2]

      [2] Lazar M A, Varghese S, Nair S S. Catalysts, 2012, 2: 572

    3. [3]

      [3] Forgacs E, Cserhati T, Oros G. Environ Int, 2004, 30: 953

    4. [4]

      [4] Galinado C, Jacques P, Kalt A. Chemosphere, 2001, 45: 997

    5. [5]

      [5] Vautier M, Guillard C, Herrmann J M. J Catal, 2001, 201: 46

    6. [6]

      [6] Priyaragini S, Veena S, Swetha D, Karthik L, Kumar G, Bhaskara Rao K V. J Environ Sci, 2014, 26: 775

    7. [7]

      [7] Pan H M, Feng J H, He G X, Cerniglia C E, Chen H Z. Anaerobe, 2012, 18: 445

    8. [8]

      [8] McKay G. Am Dyes Rep, 1979, 68(4): 29

    9. [9]

      [9] Chang M W, Chung C C, Chern J M, Chen T S. Chem Eng Sci, 2010, 65: 135

    10. [10]

      [10] Tang W Z, An H. Chemosphere, 1995, 31: 4157

    11. [11]

      [11] Chakrabarti S, Dutta B K. J Hazard Mater, 2004, 112: 269

    12. [12]

      [12] Rao A N, Sivasankar B, Sadasivam V. J Mol Catal A, 2009, 306: 77

    13. [13]

      [13] Sobana N, Swaminathan M. Sol Energ Mater Sol Cells, 2007, 91: 727

    14. [14]

      [14] Aleboyeh A, Kasiri M B, Aleboyeh H. J Environ Manage, 2012, 113: 426

    15. [15]

      [15] Huang H B, Leung D Y C, Kwong P C W, Xiong J, Zhang L. Catal Today, 2013, 201: 189

    16. [16]

      [16] Surolia P K, Lazar M A, Tayade R J, Jasra R V. Ind Eng Chem Res, 2008, 47: 5847

    17. [17]

      [17] Lazar M A, Tayade R J, Bajaj H C, Jasra R V. Nano Hybids, 2012, 1: 57

    18. [18]

      [18] Chen H W, Ku Y, Wu C Y. J Chem Technol Biotechnol, 2007, 82: 626

    19. [19]

      [19] Daniel D, Gutz I G R. Electrochem Commun, 2007, 9: 522

    20. [20]

      [20] Jo W K, Eun S S, Shin S H. Photochem Photobiol, 2011, 87: 1016

    21. [21]

      [21] Jo W K. Materials, 2013, 6: 265

    22. [22]

      [22] Jo W K, Tayade R J. Ind Eng Chem Res, 2014, 53: 2073

    23. [23]

      [23] Dutta G S, Jatothu B. Plant Biotechnol Rep, 2013, 7: 211

    24. [24]

      [24] Rauf M A, Ashraf S S. Chem Eng J, 2009, 151:10

    25. [25]

      [25] Tayade R J, Suroliya P K, Kularani R G, Jasra R V. Sci Technol Adv Mater, 2007, 8: 455

    26. [26]

      [26] Mills A, Lee S K. J Photochem Photobiol A, 2002, 152: 233

    27. [27]

      [27] Lee S K, Mills A. J Ind Eng Chem, 2004, 10: 173

    28. [28]

      [28] Chakrabarti S, Dutta B K. J Hazard Mater, 2004, 112:269

    29. [29]

      [29] Maldotti A, Molinari A, Amadelli R. Chem Rev, 2002, 102: 3811

    30. [30]

      [30] Shiraishi Y, Hirai T. J Photochem Photobiol C, 2008, 9: 157

    31. [31]

      [31] Tayade R J, Natarajan T S, Bajaj H C. Ind Eng Chem Res, 2009, 48: 10262

    32. [32]

      [32] Chen D H, Ye X J, Li K Y. Chem Eng Technol, 2005, 28: 95

    33. [33]

      [33] Autin O, Romelot C, Rust L, Hart J, Jarvis P, MacAdam J, Parsons S A, Jeffersopn B. Chemosphere, 2013, 92: 745

    34. [34]

      [34] Repo E, Rengaraj S, Pulkka S, Castangnoli E, Suihkonen S, Sopanen M, Sillanpää M. Sep Purif Technol, 2013, 120: 206

    35. [35]

      [35] Dai K, Lu L H, Dawson G. J Mater Eng Perform, 2013, 22: 1035

    36. [36]

      [36] Joonwichien S, Yamasue E, Okumura H, Ishihara K. J Chem Chem Eng, 2011, 5: 729

    37. [37]

      [37] Thillai S N, Natarajan K, Bajaj H C, Tayade R J. In: Inamuddin Ed. Advanced Functional Polymers and Composites: Materials, Devices and Allied Applications. Nova Science Publishers, USA, 2013. 33

    38. [38]

      [38] Sacco O, Stoller M, Vaiano V, Ciambelli P, Chianese A, Sannino D. Int J Photoenergy, 2012, 2012: Article ID 626759

    39. [39]

      [39] Natarajan K, Thillai S N, Bajaj H C, Tayade R J. Chem Eng J, 2011, 178: 40

    40. [40]

      [40] Loetscher L H, Carey J M, Skiles S L, Carey V M, Boyd J E. Ind Eng Chem Res, 2009, 48: 4697

    41. [41]

      [41] Dai K, Lu L H, Zhu G P, Liu Z L, Liu Q Z, Chen Z. Mater Lett, 2012, 87: 94

    42. [42]

      [42] Stefanov B I, Kaneva N V, Puma L I, Dushkin C D. Colloids Surf A, 2011, 382: 219

    43. [43]

      [43] Eskandari P, Kazemi F, Azizian-Kalandaragh Y. Sep Purif Technol, 2013, 120: 180

    44. [44]

      [44] Dai K, Lü J L, Lu L H, Liu Q, Zhu G P, Li D P. Mater Lett, 2014, 130: 5

    45. [45]

      [45] Dai K, Lu L H, Liang C H, Dai J M, Zhu G P, Liu Z L, Liu Q Z, Zhang Y X. Mater Chem Phys, 2014, 143: 1410

    46. [46]

      [46] Rasoulifard M H, Marandi M R, Majidzadeh H, Bagheri I. Environ Eng Sci, 2011, 28: 229

    47. [47]

      [47] Natarajan T S, Thomas M, Natarajan K, Bajaj H C, Tayade R J. Chem Eng J, 2011, 169: 126

    48. [48]

      [48] Rasoulifard M, Fazli M, Eskandarian M. J Ind Engg Chem, 2014, 20: 3695

    49. [49]

      [49] Wang W Y, Ku Y. Water Res, 2006, 40: 2249

    50. [50]

      [50] Nickels H, Zhou H, Basahel S N, Obaid A Y, Ali T T, Al-Ghamdi A A, El-Mossalamy E S H, Alyoubi A O, Lynch S A. Ind Eng Chem Res, 2012, 51: 3301

    51. [51]

      [51] Tokode O I, Prabhu R, Lawton L A, Robertson P K J. J Catal, 2012, 290: 138

    52. [52]

      [52] Shoaebargh S, Karimi A, Dehghan G. J Taiwan Inst Chem Eng, 2014, 45: 1677

    53. [53]

      [53] Kuo Y L, Su T L, Kung F C, Wu T J. J Hazard Mater, 2011, 190: 938

    54. [54]

      [54] Rasoulifard M H, Zarei M. International Conference on Agriculture, Chemical and Environmental Sciences (ICACES'2012). Dubai (UAE), 2012

    55. [55]

      [55] Natarajan T S, Natarajan K, Bajaj H C, Tayade R J. Ind Eng Chem Res, 2011, 50: 7753

    56. [56]

      [56] Sun Y Y, Wang W Z, Zhang L, Sun S M. Mater Res Bull, 2013, 48: 4357

    57. [57]

      [57] He G H, Liang C J, Ou Y D, Liu D N, Fang Y P, Xu Y H. Mater Res Bull, 2013, 48: 2244

    58. [58]

      [58] Qiu R, Zhang D D, Mo Y Q, Song L, Brewer E, Huang X F, Xiong Y. J Hazard Mater, 2008, 156: 80

  • 加载中
    1. [1]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

    2. [2]

      Xinlong ZhengZhongyun ShaoJiaxin LinQizhi GaoZongxian MaYiming SongZhen ChenXiaodong ShiJing LiWeifeng LiuXinlong TianYuhao Liu . Recent advances of CuSbS2 and CuPbSbS3 as photocatalyst in the application of photocatalytic hydrogen evolution and degradation. Chinese Chemical Letters, 2025, 36(3): 110533-. doi: 10.1016/j.cclet.2024.110533

    3. [3]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    4. [4]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    5. [5]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    6. [6]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    7. [7]

      Yuqing ZhuHaohao ChenLi WangLiqun YeHoule ZhouQintian PengHuaiyong ZhuYingping Huang . Piezoelectric materials for pollutants degradation: State-of-the-art accomplishments and prospects. Chinese Chemical Letters, 2024, 35(4): 108884-. doi: 10.1016/j.cclet.2023.108884

    8. [8]

      Menglu GuoYing-Qi SongJunfei ChengGuoqiang DongXun SunChunquan Sheng . Hydrophobic tagging-induced degradation of NAMPT in leukemia cells. Chinese Chemical Letters, 2024, 35(9): 109392-. doi: 10.1016/j.cclet.2023.109392

    9. [9]

      Yunlong SunWei DingYanhao WangZhening ZhangRuyun WangYinghui GuoZhiyuan GaoHaiyan DuDong Ma . New insight into manganese-enhanced abiotic degradation of microplastics: Processes and mechanisms. Chinese Chemical Letters, 2025, 36(3): 109941-. doi: 10.1016/j.cclet.2024.109941

    10. [10]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    11. [11]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    12. [12]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    13. [13]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    14. [14]

      Jiangqi Ning Junhan Huang Yuhang Liu Yanlei Chen Qing Niu Qingqing Lin Yajun He Zheyuan Liu Yan Yu Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453

    15. [15]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    16. [16]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    17. [17]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    18. [18]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    19. [19]

      Zimo YangYan TongYongbo LiuQianlong LiuZhihao NiYuna HeYu Rao . Developing selective PI3K degraders to modulate both kinase and non-kinase functions. Chinese Chemical Letters, 2024, 35(11): 109577-. doi: 10.1016/j.cclet.2024.109577

    20. [20]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

Metrics
  • PDF Downloads(0)
  • Abstract views(344)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return