Citation: Tanglin Liu, Qinghua Li, Zhaolin He, Jiawei Zhang, Chunjiang Wang. Catalytic asymmetric construction of spiro pyrrolidines with contiguous quaternary centers via 1,3-dipolar cycloaddition of azomethine ylides[J]. Chinese Journal of Catalysis, ;2015, 36(1): 68-77. doi: 10.1016/S1872-2067(14)60204-7 shu

Catalytic asymmetric construction of spiro pyrrolidines with contiguous quaternary centers via 1,3-dipolar cycloaddition of azomethine ylides

  • Corresponding author: Chunjiang Wang, 
  • Received Date: 26 June 2014
    Available Online: 22 July 2014

    Fund Project: 国家重点基础研究发展计划(973计划, 2011CB808600) (973计划, 2011CB808600) 国家自然科学基金(21172176, 21372180) (21172176, 21372180) 湖北省高等学校科研基金资助项目(ZRZ0273) (ZRZ0273) 教育部博士学术新人奖(5052011203011). (5052011203011)

  • Bioactive 5-aza-spiro[2,4]heptanes with high functionality and up to three contiguous all-carbon quaternary stereogenic centers were synthesized by Cu(I)-catalyzed asymmetric endo-selective 1,3-dipolar cycloaddition of azomethine ylides with cyclopropylidene acetates. This synthesis system performs well for a broad scope of substrates. α-unsubstituted/α-substituted azomethine ylides and cyclopropylidene acetates are compatible 1,3-dipoles and dipolarophiles, which afford the spiro heterocycles with contiguous quaternary centers at 2-, 3- and 4-positions of the pyrrolidine ring in good yield (up to 97%) and high diastereoselectivity (95:5->98:2 d.r) and excellent enantioselectivity (87%-98% ee).
  • 加载中
    1. [1]

      [1] Trost B M, Jiang C H. Synthesis, 2006: 369

    2. [2]

      [2] Flynn A B, Ogilvie W W. Chem Rev, 2007, 107: 4698

    3. [3]

      [3] Hawner C, Alexakis A. Chem Commun, 2010, 46: 7295

    4. [4]

      [4] Uyeda C, Rötheli A R, Jacobsen E N. Angew Chem Int Ed, 2010, 49: 9753

    5. [5]

      [5] Christoffers J, Mann A. Angew Chem Int Ed, 2001, 40: 4591

    6. [6]

      [6] Christoffers J, Baro A. Angew Chem Int Ed, 2003, 42: 1688

    7. [7]

      [7] Christoffers J, Baro A. Quaternary Stereocenters: Challenges and Solutions for Organic Synthesis. German: Wiley-VCH, 2006

    8. [8]

      [8] Peterson E A, Overman L E. Proceed Nat Acad Sci USA, 2004, 101: 11943

    9. [9]

      [9] Ardolino M T, Morken P. J Am Chem Soc, 2014, 136: 7092

    10. [10]

      [10] Cao Z Y, Wang X M, Tan C, Zhao X L, Zhou J, Ding K L. J Am Chem Soc, 2013, 135: 8197

    11. [11]

      [11] Gao L Z, Hwang G-S, Ryu D H. J Am Chem Soc, 2011, 133: 20708

    12. [12]

      [12] Trost B M, Osipov M. Angew Chem Int Ed, 2013, 52: 9176

    13. [13]

      [13] Ghosh S, Bhunia S, Kakde B N, De S, Bisai A. Chem Commun, 2014, 50: 2434

    14. [14]

      [14] Ohmatsu K, Imagawa N, Ooi T. Nat Chem, 2014, 6: 47

    15. [15]

      [15] Mitsunuma H, Shibasaki M, Kanai M, Matsunaga S. Angew Chem Int Ed, 2012, 51: 5217

    16. [16]

      [16] Zhang H L, Hong L, Kang H, Wang R. J Am Chem Soc, 2013, 135: 14098

    17. [17]

      [17] Harwood L M, Vickers R J. In: Padwa A, Peasson W H eds. Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products. German: John Wiley & Sons, 2003. 169

    18. [18]

      [18] Pyne S G, Davis A S, Gates N J, Hartley J P, Lindsay K B, Machan T, Tang M. Synlett, 2004: 2670

    19. [19]

      [19] Bolm C, Rantanen T, Schiffers I, Zani L. Angew Chem Int Ed, 2005, 44: 1758

    20. [20]

      [20] Conde E, Bello D, de Cozar A, Sanchez M, Vazquez M A, Cossio F P. Chem Sci, 2012, 3: 1486

    21. [21]

      [21] Maroto E E, Filippone S, Suárez M, Martínez-Álvarez R, de Cózar A, Cossío F P, Martín N. J Am Chem Soc, 2014, 136: 705

    22. [22]

      [22] Huisgen R. Angew Chem Int Ed, 1963, 2: 565

    23. [23]

      [23] Woodward R B, Hoffmann R. Angew Chem Int Ed, 1969, 8: 781

    24. [24]

      [24] Houk K N, Sims J, Duke R E, Strozier R W, George J K. J Am Chem Soc, 1973, 95: 7287

    25. [25]

      [25] Houk K N, Sims J, Watts C R, Luskus L J. J Am Chem Soc, 1973, 95: 7301

    26. [26]

      [26] Ruck-Braun K, Freysoldt T H E, Wierschem F. Chem Soc Rev, 2005, 34: 507

    27. [27]

      [27] Pellissier H. Tetrahedron, 2007, 63: 3235

    28. [28]

      [28] Williams R M, Fegley G J. Tetrahedron Lett, 1992, 33: 6755

    29. [29]

      [29] Mamane V, Riant O. Tetrahedron, 2001, 57: 2555

    30. [30]

      [30] Hanessian S, Yun H Y, Hou Y H, Tintelnot-Blomley M. J Org Chem, 2005, 70: 6746

    31. [31]

      [31] Rispens M T, Keller E, de Lange B, Zijlstra R W J, Feringa B L. Tetrahedron: Asymmetry, 1994, 5: 607

    32. [32]

      [32] Ma Z K, Wang S Y, Cooper C S, Fung A K L, Lynch J K, Plagge F, Chu D T W. Tetrahedron: Asymmetry, 1997, 8: 883

    33. [33]

      [33] Enders D, Meyer I, Runsink J, Raabe G. Tetrahedron, 1998, 54: 10733

    34. [34]

      [34] Grigg R, Thornton-Pett M, Xu J, Xu L H. Tetrahedron, 1999, 55: 13841

    35. [35]

      [35] Karlsson S, Högberg H E. Tetrahedron: Asymmetry, 2001, 12: 1975

    36. [36]

      [36] Nyerges M, Bendell D, Arany A, Hibbs D E, Coles S J, Hursthouse M B, Groundwater P W, Meth-Cohn O. Tetrahedron, 2005, 61: 3745

    37. [37]

      [37] Merino P, Tejero T, Díez-Martínez A, Gültekin Z. Eur J Org Chem, 2011: 6567

    38. [38]

      [38] Longmire J M, Wang B, Zhang X M. J Am Chem Soc, 2002, 124: 13400

    39. [39]

      [39] Gothelf A S, Gothelf K V, Hazell R G, Jörgensen K A. Angew Chem Int Ed, 2002, 41: 4236

    40. [40]

      [40] Gothelf K V, Jörgensen K A. Chem Rev, 1998, 98: 863

    41. [41]

      [41] Coldham I, Hufton R. Chem Rev, 2005, 105: 2765

    42. [42]

      [42] Husinec S, Savic V. Tetrahedron: Asymmetry, 2005, 16: 2047

    43. [43]

      [43] Najera C, Sansano J M. Angew Chem Int Ed, 2005, 44: 6272

    44. [44]

      [44] Bonin M, Chauveau A, Micouin L. Synlett, 2006: 2349

    45. [45]

      [45] Pandey G, Banerjee P, Gadre S R. Chem Rev, 2006, 106: 4484

    46. [46]

      [46] Galliford C V, Scheidt K A. Angew Chem Int Ed, 2007, 46: 8748

    47. [47]

      [47] Nair V, Suja T D. Tetrahedron, 2007, 63: 12247

    48. [48]

      [48] Pellissier H. Tetrahedron, 2007, 63: 3235

    49. [49]

      [49] Alvarez-Corral M, Munoz-Dorado M, Rodriguez-Garcia I. Chem Rev, 2008, 108: 3174

    50. [50]

      [50] Naodovic M, Yamamoto H. Chem Rev, 2008, 108: 3132

    51. [51]

      [51] Stanley L M, Sibi M P. Chem Rev, 2008, 108: 2887

    52. [52]

      [52] Engels B, Christl M. Angew Chem Int Ed, 2009, 48: 7968

    53. [53]

      [53] Najera C, Sansano J M. Org Biomol Chem, 2009, 7: 4567

    54. [54]

      [54] Chen Q A, Wang D S, Zhou Y G. Chem Commun, 2010, 46: 4043

    55. [55]

      [55] Adrio J, Carretero J C. Chem Commun, 2011, 47: 6784

    56. [56]

      [56] Xue Z Y, Liu T L, Lu Z, Huang H, Tao H Y, Wang C J. Chem Commun, 2010, 46: 1727

    57. [57]

      [57] Arai T, Mishiro A, Yokoyama N, Suzuki K, Sato H. J Am Chem Soc, 2010, 132: 5338

    58. [58]

      [58] Fukuzawa S i, Oki H. Org Lett, 2008, 10: 1747

    59. [59]

      [59] Liang G, Tong M C, Wang C J. Adv Synth Catal, 2009, 351: 3101

    60. [60]

      [60] Lopez-Perez A, Adrio J, Carretero J C. J Am Chem Soc, 2008, 130: 10084

    61. [61]

      [61] Robles-Machín R, Alonso I, Adrio J, Carretero J C. Chem Eur J, 2010, 16: 5286

    62. [62]

      [62] Chen X H, Wei Q, Luo S W, Xiao H, Gong L Z. J Am Chem Soc, 2009, 131: 13819

    63. [63]

      [63] Shi F, Tao Z L, Luo S W, Tu S J, Gong L Z. Chem Eur J, 2012, 18: 6885

    64. [64]

      [64] Cheng M N, Wang H, Gong L Z. Org Lett, 2011, 13: 2418

    65. [65]

      [65] Antonchick A P, Gerding-Reimers C, Catarinella M, Schuermann M, Preut H, Ziegler S, Rauh D, Waldmann H. Nat Chem, 2010, 2: 735

    66. [66]

      [66] Antonchick A P, Schuster H, Bruss H, Schürmann M, Preut H, Rauh D, Waldmann H. Tetrahedron, 2011, 67: 10195

    67. [67]

      [67] Awata A, Arai T. Chem Eur J, 2012, 18: 8278

    68. [68]

      [68] Sun W S, Zhu G M, Wu C Y, Li G F, Hong L, Wang R. Angew Chem Int Ed, 2013, 52: 8633

    69. [69]

      [69] Wang L, Shi X M, Dong W P, Zhu L P, Wang R. Chem Commun, 2013, 49: 3458

    70. [70]

      [70] Liu T L, He Z L, Li Q H, Tao H Y, Wang C J. Adv Synth Catal, 2011, 353: 1713

    71. [71]

      [71] Liu T L, He Z L, Tao H Y, Cai Y P, Wang C J. Chem Commun, 2011, 47: 2616

    72. [72]

      [72] Liu T L, He Z L, Wang C J. Chem Commun, 2011, 47: 9600

    73. [73]

      [73] Liu T L, Xue Z Y, Tao H Y, Wang C J. Org Biomol Chem, 2011, 9: 1980

    74. [74]

      [74] Liu T L, He Z L, Tao H Y, Wang C J. Chem Eur J, 2012, 18: 8042

    75. [75]

      [75] Pietruszka J. Chem Rev, 2003, 103: 1051

    76. [76]

      [76] Wessjohann L A, Brandt W, Thiemann T. Chem Rev, 2003, 103: 1625

    77. [77]

      [77] Baldwin J E. Chem Rev, 2003, 103: 1197

    78. [78]

      [78] Pellissier H. Tetrahedron, 2010, 66: 8341

    79. [79]

      [79] Nakamura I, Yamamoto Y. Adv Synth Catal, 2002, 344: 111

    80. [80]

      [80] Shi M, Shao L X, Lu J M, Wei Y, Mizuno K, Maeda H. Chem Rev, 2010, 110: 5883

    81. [81]

      [81] Galano A, Alvarez-Idaboy J R, Vivier-Bunge A. Theor Chem Acc, 2007, 118: 597

    82. [82]

      [82] Brandi A, Cicchi S, Cordero F M, Goti A. Chem Rev, 2003, 103: 1213

    83. [83]

      [83] Kimura Y, Atarashi S, Kawakami K, Sato K, Hayakawa I. J Med Chem, 1994, 37: 3344

    84. [84]

      [84] Yoshida T, Yamamoto Y, Orita H, Kakiuchi M, Takahashi Y, Itakura M, Kado N, Yasuda S, Kato H, Itoh Y. Chem Pharm Bull, 1996, 44: 1376

    85. [85]

      [85] Takahashi Y, Masuda N, Otsuki M, Miki M, Nishino T. Antimicrob Agents Ch, 1997, 41: 1326

    86. [86]

      [86] Jiraskova N. Curr Opin Investig Drugs, 2000, 1: 31

    87. [87]

      [87] Cianchetta G, Mannhold R, Cruciani G, Baroni M, Cecchetti V. J Med Chem, 2004, 47: 3193

    88. [88]

      [88] Park H B, Jo N H, Hong J H, Chei J H, Cho J H, Yoo K H, Oh C H. Arch Pharm, 2007, 340: 530

    89. [89]

      [89] Kim S Y, Park H B, Cho J H, Yoo K H, Oh C H. Bioorg Med Chem Lett, 2009, 19: 2558

    90. [90]

      [90] Tong M C, Li J, Tao H Y, Li Y X, Wang C J. Chem Eur J, 2011, 17: 12922

    91. [91]

      [91] Wang M Y, Wang C J, Lin Z Y. Organometallics, 2012, 31: 7870

    92. [92]

      [92] Vivanco S, Lecea B, Arrieta A, Prieto P, Morao I, Linden A, Cossío F P. J Am Chem Soc, 2000, 122; 6078

    93. [93]

      [93] Hernández-Toribio J, Arrayás R G, Carretero J C. J Am Chem Soc, 2008, 130: 16150

    94. [94]

      [94] Castelló L M, Nájera C, Sansano J M, Larrañaga O, Cózar A d, Cossío F P. Org Lett, 2013, 15: 2902

    95. [95]

      [95] Hernández-Toribio J, Gómez Arrayás R, Carretero J C. Chem Eur J, 2010, 16: 1153

    96. [96]

      [96] Kim H Y, Shih H J, Knabe W E, Oh K. Angew Chem Int Ed, 2009, 48: 7420

    97. [97]

      [97] Zhao B G, Han Z B, Ding K L. Angew Chem Int Ed, 2013, 52: 4744

  • 加载中
    1. [1]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    2. [2]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    3. [3]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    4. [4]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    5. [5]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    6. [6]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    7. [7]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    8. [8]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    9. [9]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    10. [10]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    11. [11]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    14. [14]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    15. [15]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    16. [16]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    17. [17]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    18. [18]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    19. [19]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    20. [20]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

Metrics
  • PDF Downloads(165)
  • Abstract views(761)
  • HTML views(66)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return