Citation: Hong Liu, Xiaofeng Wu, Xiangqi Li, Jie Wang, Ximei Fan. Simple preparation of scale-like CuO nanoparticles coated on tetrapod-like ZnO whisker photocatalysts[J]. Chinese Journal of Catalysis, ;2014, 35(12): 1997-2005. doi: 10.1016/S1872-2067(14)60198-4 shu

Simple preparation of scale-like CuO nanoparticles coated on tetrapod-like ZnO whisker photocatalysts

  • Corresponding author: Ximei Fan, 
  • Received Date: 12 May 2014
    Available Online: 8 July 2014

    Fund Project: 国家高技术研究发展计划(863计划, 2009AA03Z427). (863计划, 2009AA03Z427)

  • Scale-like copper oxide (CuO)/tetrapod-like ZnO whisker (T-ZnOw) nanocomposites were fabricated using poly(ethylene glycol) (PEG; Mw = 400) as a soft template by a simple and environmentally friendly method without the use of hydroxide reagents at low temperatures. The structures and morphologies of the samples were investigated in detail, and the photocatalytic properties of the samples were determined using photoluminescence (PL) detection and the photocatalytic degradation of cationic pollutant (methylene blue, MB) and anionic pollutant (methyl orange, MO) aqueous solutions under ultraviolet (UV) irradiation. Large numbers of scale-like CuO nanoparticles were deposited on the T-ZnOw surfaces in an ordered fashion; the amount of scale-like CuO nanoparticles increased, and the arrangement became more ordered with increasing PEG 400 content. The PL emission peak intensities of the samples changed with increasing PEG 400 content. All the CuO/T-ZnOw nanocomposites showed excellent photocatalytic activities in the degradation of MB and MO aqueous solutions under UV irradiation when the PEG 400 concentration was less than or equal to 0.60 mol/L. The photocatalytic properties of the samples improved with increasing PEG400 concentration, but deteriorated when the PEG 400 concentration was increased further; this was reflected by the emission peak intensities in the PL spectra. The nanocomposites showed better efficiency for MB degradation than for MO degradation under the same conditions.
  • 加载中
    1. [1]

      [1] Schwitzgebel J, Ekerdt J G, Gerischer H, Heller A. J Phys Chem, 1995, 99: 5633

    2. [2]

      [2] Willner I, Eichen Y, Frank A J, Fox M A. J Phys Chem, 1993, 97: 7264

    3. [3]

      [3] Suzuki M, Ito T, Taga Y. Appl Phys Lett, 2001, 78: 3968

    4. [4]

      [4] Gu C D, Cheng C, Huang H Y, Wong T L, Wang N, Zhang T Y. Cryst Growth Des, 2009, 9: 3278

    5. [5]

      [5] Khodja A A, Sehili T, Pilichowski J F, Boule P. J Photochem Photobiol A, 2001, 141: 231

    6. [6]

      [6] Mansilla H D, Villasenor J, Maturana G, Baeza J, Freer J, Durán N. J Photochem Photobiol A, 1994, 78: 267

    7. [7]

      [7] Ohnishi H, Matsumura M, Tsubomura H, Iwasaki M. Ind Eng Chem Res, 1989, 28: 719

    8. [8]

      [8] Xu X L, Duan X, Yi Z G, Zhou Z W, Fan X M, Wang Y. Catal Commun, 2010, 12: 169

    9. [9]

      [9] Yamaguchi Y, Yamazaki M, Yoshihara S, Shirakashi T. J Electroanal Chem, 1998, 442: 1

    10. [10]

      [10] Wan Q, Wang T H, Zhao J C. Appl Phys Lett, 2005, 87: 083105

    11. [11]

      [11] Liu H, Wang J, Fan X M, Zhang F Z, Liu H R, Dai J, Xiang F M. Mater Sci Eng B, 2013, 178: 158

    12. [12]

      [12] Xu C, Cao L X, Su G, Liu W, Liu H, Yu Y Q, Qu X F. J Hazard Mater, 2010, 176: 807

    13. [13]

      [13] Koffyberg F P, Benko F A. J Appl Phys, 1982, 53: 1173

    14. [14]

      [14] Wang L, Han K, Song G, Yang X, Tao M. Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, 2006, 1: 130

    15. [15]

      [15] Bennici S, Gervasini A. Appl Catal B, 2006, 62: 336

    16. [16]

      [16] Lo C H, Tsung T T, Chen L C, Su C H, Lin H M. J Nanopart Res, 2005, 7: 313

    17. [17]

      [17] Zhou K B, Wang R P, Xu B Q, Li Y D. Nanotechnology, 2006, 17: 3939

    18. [18]

      [18] Zhang C, Yin L W, Zhang L Y, Qi Y X, Lun N. Mater Lett, 2012, 67: 303

    19. [19]

      [19] Wei S Q, Chen Y Y, Ma Y Y, Shao Z C. J Mol Catal A, 2010, 331: 112

    20. [20]

      [20] Saravanan R, Karthikeyan S, Gupta V K, Sekaran G, Narayanan V, Stephen A. Mater Sci Eng C, 2013, 33: 91

    21. [21]

      [21] Liu Z L, Deng J C, Deng J J, Li F F. Mater Sci Eng B, 2008, 150: 99

    22. [22]

      [22] Li B X, Wang Y F. Superlattice Microstruct, 2010, 47: 615

    23. [23]

      [23] Zhou Z W, Peng W M, Ke S Y, Deng H. J Mater Process Technol, 1999, 89-90: 415

    24. [24]

      [24] Wu D Z, Fan X M, Tian K, Dai J, Liu H R. Trans Nonferr Metal Soc China, 2012, 22: 1620

    25. [25]

      [25] Jing L Q, Xu Z L, Sun X J, Shang J, Cai W M. Appl Surf Sci, 2001, 180: 308

    26. [26]

      [26] Ai Z H, Zhang L Z, Lee S C, Ho W K. J Phys Chem C, 2009, 113: 20896

    27. [27]

      [27] Peng W Q, Qu S C, Cong G W, Wang Z G. Cryst Growth Des, 2006, 6: 1518

    28. [28]

      [28] Sakai Y, Ninomiya S, Hiraoka K. Surf Interface Anal, 2012, 44: 938

    29. [29]

      [29] Wang W Z, Zhan Y J, Wang X S, Liu Y K, Zheng C L, Wang G H. Mater Res Bull, 2002, 37: 1093

    30. [30]

      [30] Borgohain K, Murase N, Mahamuni S. J Appl Phys, 2002, 92: 1292

    31. [31]

      [31] Wang J, Fan X M, Wu D Z, Dai J, Liu H, Liu H R, Zhou Z W. Appl Surf Sci, 2011, 258: 1797

    32. [32]

      [32] Shang M, Wang W Z, Zhou L, Sun S M, Yin W Z. J Hazard Mater, 2009, 172: 338

    33. [33]

      [33] Gupta J, Barick K C, Bahadur D. J Alloys Compd, 2011, 509: 6725

    34. [34]

      [34] Song L, Qiu R L, Mo Y Q, Zhang D D, Wei H, Xiong Y. Catal Commun, 2007, 8: 429

    35. [35]

      [35] Yang Z M, Zhang P, Ding Y H, Jiang Y, Long Z L, Dai W L. Mater Res Bull, 2011, 46: 1625

    36. [36]

      [36] Fan X M, Lian J S, Guo Z X, Lu H J. Appl Surf Sci, 2005, 239: 176

    37. [37]

      [37] Kansal S K, Singh M, Kaur M P, Sud D. Indian Chem Engr Sect B, 2005, 47: 111

    38. [38]

      [38] Kansal S K, Singh M, Sud D. J Hazard Mater, 2007, 141: 581

    39. [39]

      [39] Zhang Q, Jing Y H, Shiue A, Chang C T, You W Y. Adv Sci Lett, 2012, 18: 213

    40. [40]

      [40] Aissa A H, Puzenat E, Plassais A, Herrmann J M, Haehnel C, Guillard C. Appl Catal B, 2011, 107: 1

    41. [41]

      [41] Xia S J, Liu F X, Ni Z M, Shi W, Xue J L, Qian P P. Appl Catal B, 2014, 144: 570

  • 加载中
    1. [1]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    2. [2]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    3. [3]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    4. [4]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    5. [5]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    6. [6]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    7. [7]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    8. [8]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    9. [9]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    11. [11]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    12. [12]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    13. [13]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    14. [14]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    15. [15]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    16. [16]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    17. [17]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    18. [18]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    19. [19]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    20. [20]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

Metrics
  • PDF Downloads(0)
  • Abstract views(354)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return