Citation:
Xinyan Li, Xiaoxiao Zhang, Yongzhen Xu, Ye Liu, Xinping Wang. Influence of support properties on H2 selective catalytic reduction activities and N2 selectivities of Pt catalysts[J]. Chinese Journal of Catalysis,
;2015, 36(2): 197-203.
doi:
10.1016/S1872-2067(14)60197-2
-
The selective catalytic reduction of NOx by H2 (H2-SCR) was studied over Pt/MgO, Pt/γ-Al2O3, Pt/ZrO2, and Pt/HZSM-5 catalysts. The H2-SCR activities and N2 selectivities of the catalysts were strongly influenced by the amounts of Pt metal in the catalysts and the NOx adsorption capacities of the supports. The acidic surface of HZSM-5 increased the amount of metallic Pt on the support, decreasing the NOx adsorption capacity, resulting in much higher H2-SCR activity and N2 selectivity. The inferior activities of Pt/MgO and Pt/γ-Al2O3 are ascribed to the low amounts of metallic Pt and large NOx adsorption capacities of the supports as a result of their basic surfaces. Based on these results and in situ Fourier transform infrared spectroscopic studies of the reaction, it is proposed that the reduction products of nitrite/nitrate species at the Pt/support interface are N2 or N2O, depending on the relative amounts of active hydrogen and nitrous species involved in the reduction.
-
-
-
[1]
[1] Liu Z M, Woo S I. Catal Rev-Sci Eng, 2006, 48: 43
-
[2]
[2] Choo S T, Lee Y G, Nam I S, Ham S, Lee J B. Appl Catal A, 2000, 200: 177
-
[3]
[3] Nakajima F, Hamada I. Catal Today, 1996, 29: 109
-
[4]
[4] Gutberlet H, Schallert B. Catal Today, 1993, 16: 207
-
[5]
[5] Costa C N, Savva P G, Fierro J L G, Efstathiou A M. Appl Catal B, 2007, 75: 147
-
[6]
[6] Obuchi A, Ohi A, Nakamura M, Ogata A, Mizuno K, Ohuchi H. Appl Catal B, 1993, 2: 71
-
[7]
[7] Liu Z M, Woo S I, Lee W S. J Phys Chem B, 2006, 110: 26019
-
[8]
[8] Yu Q, Wang X P, Xing N, Yang H L, Zhang S X. J Catal, 2007, 245: 124
-
[9]
[9] Shelef M, Jones J H, Kummer J T, Otto K, Weaver E E. Environ Sci Technol, 1971, 5: 790
-
[10]
[10] Frank B, Emig G, Renken A. Appl Catal B, 1998, 19: 45
-
[11]
[11] Salama T M, Ohnishi R, Ichikawa M. Chem Commun, 1997: 105
-
[12]
[12] Costa C N, Efstathiou A M. Appl Catal B, 2007, 72: 240
-
[13]
[13] Itoh M, Motoki K, Saito M, Iwamoto J, Machida K. Bull Chem Soc Jpn, 2009, 82: 1197
-
[14]
[14] Machida M, Watanabe T. Appl Catal B, 2004, 52: 281
-
[15]
[15] Olympiou G G, Efstathiou A M. Chem Eng J, 2011, 170: 424
-
[16]
[16] Park S M, Kim M Y, Kim E S, Han H S, Seo G. Appl Catal A, 2011, 395: 120
-
[17]
[17] Hamada S, Hibarino S, Ikeue K, Machida M. Appl Catal B, 2007, 74: 197
-
[18]
[18] Hamada S, Ikeue K, Machida M. Appl Catal B, 2007, 71: 1
-
[19]
[19] Schott F J P, Balle P, Adler J, Kureti S. Appl Catal B, 2009, 87: 18
-
[20]
[20] Li L D, Wu P, Yu Q, Wu G J, Guan N J. Appl Catal B, 2010, 94: 254
-
[21]
[21] Machida M, Ikeda S, Kurogi D, Kijima T. Appl Catal B, 2001, 35: 107
-
[22]
[22] Costa C N, Efstathiou A M. J Phys Chem C, 2007, 111: 3010
-
[23]
[23] Burch R, Coleman M D. J Catal, 2002, 208: 435
-
[24]
[24] Satsuma A, Hashimoto M, Shibata J, Yoshida H, Hattori T. Chem Commun, 2003: 1698
-
[25]
[25] Shibata J, Hashimoto M, Shimizu K, Yoshida H, Hattori T, Satsuma A. J Phys Chem B, 2004, 108: 18327
-
[26]
[26] Wu P, Li L D, Yu Q, Wu G J, Guan N J. Catal Today, 2010, 158: 228
-
[27]
[27] Burch R, Shestov A A, Sullivan J A. J Catal, 1999, 186: 353
-
[28]
[28] Yang J I, Jung H. Chem Eng J, 2009, 146: 11
-
[29]
[29] Burch R, Millington P J, Walker A P. Appl Catal B, 1994, 4: 65
-
[30]
[30] Marina O A, Yentekakis I V, Vayenas C G, Palermo A, Lambert R M. J Catal, 1997, 166: 218
-
[31]
[31] Li J, Wu G J, Guan N J, Li L D. Catal Commum, 2012, 24: 38
-
[32]
[32] Pitchon V, Fritz A. J Catal, 1999, 186: 64
-
[33]
[33] Yazawa Y, Takagi N, Yoshida H, Komai S, Satsuma A, Tanaka T, Yoshida S, Hattori T. Appl Catal A, 2002, 233: 103
-
[34]
[34] Yoshida H, Yazawa Y, Hattori T. Catal Today, 2003, 87: 19
-
[35]
[35] Si Z C, Weng D, Wu X D, Li J, Li G. J Catal, 2010, 271: 43
-
[36]
[36] Kantcheva M, Vakkasoglu A S. J Catal, 2004, 223: 352
-
[37]
[37] Savva P G, Efstathiou A M. J Catal, 2008, 257: 324
-
[1]
-
-
-
[1]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[2]
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
-
[3]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[4]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[5]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[6]
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
-
[7]
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
-
[8]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[9]
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
-
[10]
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
-
[11]
Qianwen Han , Tenglong Zhu , Qiuqiu Lü , Mahong Yu , Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037
-
[12]
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
-
[13]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[14]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[15]
Renxiao Liang , Zhe Zhong , Zhangling Jin , Lijuan Shi , Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024
-
[16]
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
-
[17]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[18]
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023
-
[19]
Hui Wang , Abdelkader Labidi , Menghan Ren , Feroz Shaik , Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039
-
[20]
Ke QIAO , Yanlin LI , Shengli HUANG , Guoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265
-
[1]
Metrics
- PDF Downloads(209)
- Abstract views(592)
- HTML views(19)