Citation: Hong Jiang, Xiaoxu Sun, Yan Du, Rizhi Chen, Weihong Xing. Catalytic activity of palladium nanoparticles immobilized on an amino-functionalized ceramic membrane support[J]. Chinese Journal of Catalysis, ;2014, 35(12): 1990-1996. doi: 10.1016/S1872-2067(14)60190-X shu

Catalytic activity of palladium nanoparticles immobilized on an amino-functionalized ceramic membrane support

  • Corresponding author: Rizhi Chen,  Weihong Xing, 
  • Received Date: 22 May 2014
    Available Online: 3 July 2014

    Fund Project: 国家自然科学基金(21106061, 21125629) (21106061, 21125629) 江苏省自然科学基金(BK20130920). (BK20130920)

  • Pd nanoparticles were immobilized on a tubular ceramic membrane support. The support surface was functionalized by N-(β-aminoethyl)-γ-aminopropyl trimethoxy silane (AAPTS), which contains two amino groups. The Pd-immobilized ceramic membrane support was characterized by X-ray diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, inductively coupled plasma emission spectroscopy, X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy. Its catalytic properties were investigated by the liquid phase hydrogenation of p-nitrophenol to p-aminophenol. The Pd-immobilized ceramic membrane support was compared with the Pd nanoparticles immobilized on a similar support functionalized by γ-amino-propyltriethoxy silane (3-APTS), which contains one amino group. Higher catalytic activity and stability were observed for the AAPTS-functionalized support. AAPTS contains twice as many amino groups as 3-APTS, and consequently exhibited a stronger electron-donating effect toward Pd. The AAPTS-functionalized ceramic membrane support contained more immobilized Pd nanoparticles, which were bound more strongly. This led to a higher catalytic activity and stability.
  • 加载中
    1. [1]

      [1] Liu N, Chen X, Ma Z F. Biosens Bioelectron, 2013, 48: 33

    2. [2]

      [2] Lai G S, Zhang H L, Yong J W, Yu A M. Biosens Bioelectron, 2013, 47: 178

    3. [3]

      [3] Tang B, Tao J L, Xu S P, Wang J F, Hurren C, Xu W Q, Sun L, Wang X G. Chem Eng J, 2011, 172: 601

    4. [4]

      [4] Liu R, Yoshida H, Fujita S, Lu N, Tu W H, Arai M. Appl Catal A, 2013, 455: 32

    5. [5]

      [5] Liang C H, Han J G, Shen K H, Wang L G, Zhao D F, Freeman H S. Chem Eng J, 2010, 165: 709

    6. [6]

      [6] Mandal S, Roy D, Chaudhari R V, Sastry M. Chem Mater, 2004, 16: 3714

    7. [7]

      [7] Dablemont C, Lang P, Mangeney C, Piquemal J Y, Petkov V, Herbst F, Viau G. Langmuir, 2008, 24: 5832

    8. [8]

      [8] Ikeda S, Ishino S, Harada T, Okamoto N, Sakata T, Mori H, Kuwabata S, Torimoto T, Matsumura M. Angew Chem Int Ed, 2006, 45: 7063

    9. [9]

      [9] Amali A J, Rana R K. Green Chem, 2009, 11: 1781

    10. [10]

      [10] Domènech B, Mũnoz M, Muraviev D N, Macanás J. Catal Today, 2012, 193: 158

    11. [11]

      [11] Mertens P G N, Vandezande P, Ye X, Poelman H, De Vos D E, Vankelecom I F J. Adv Synth Catal, 2008, 350: 1241

    12. [12]

      [12] Volkov V V, Lebedeva V I, Petrova I V, Bobyl A V, Konnikov S G, Roldughin V I, van Erkel J, Tereshchenko G F. Adv Colloid Interface Sci, 2011, 164: 144

    13. [13]

      [13] Lasri J, Mac Leod T C O, Pombeiro A J L. Appl Catal A, 2011, 397: 94

    14. [14]

      [14] Yacou C, Ayral A, Giroir-Fendler A, Baylet A, Julbe A. Catal Today, 2010, 156: 216

    15. [15]

      [15] Liu C, Tan R, Yu N Y, Yin D H. Microporous Mesoporous Mater, 2010, 131: 162

    16. [16]

      [16] Williams M, Pineda-Vargas C A, Khataibe E V, Bladergroen B J, Nechaev A N, Linkov V M. Appl Surf Sci, 2008, 254: 3211

    17. [17]

      [17] Jayamurugan G, Umesh C P, Jayaraman N. J Mol Catal A, 2009, 307: 142

    18. [18]

      [18] Yokoi T, Kubotab Y, Tatsumi T. Appl Catal A, 2012, 421-422: 14

    19. [19]

      [19] Guin D, Baruwati B, Manorama S V. Org Lett, 2007, 9: 1419

    20. [20]

      [20] Chen R Z, Jiang Y G, Xing W H, Jin W Q. Ind Eng Chem Res, 2011, 50: 4405

    21. [21]

      [21] Chen R Z, Jiang Y G, Xing W H, Jin W Q. Ind Eng Chem Res, 2013, 52: 5002

    22. [22]

      [22] Lee J S, Yim J H, Jeon J K, Ko Y S. Catal Today, 2012, 185: 175

    23. [23]

      [23] Yang B, Deng S B, Yu G, Lu Y H, Zhang H, Xiao J Z, Chen G, Cheng X B, Shi L L. Chem Eng J, 2013, 219: 492

    24. [24]

      [24] Sohn Y. Appl Surf Sci, 2010, 257: 1692

    25. [25]

      [25] Bottino A, Capannelli G, Comite A, Di Felice R. Desalination, 2002, 144: 411

    26. [26]

      [26] Xue Y P, Lu X F, Bian X J, Lei J Y, Wang C. J Colloid Interface Sci, 2012, 379: 89

    27. [27]

      [27] Yang Q Y, Zhu Y, Tian L, Xie S H, Pei Y, Li H, Li H X, Qiao M H, Fan K N. Appl Catal A, 2009, 369: 67

    28. [28]

      [28] Zhang L X, Jin Q Z, Huang J H, Liu Y F, Shan L, Wang X G. Appl Surf Sci, 2010, 256: 5911

    29. [29]

      [29] Dai H B, Li H X, Wang F H. Appl Surf Sci, 2006, 253: 2474

    30. [30]

      [30] Ukaji E, Furusawa T, Sato M, Suzuki N. Appl Surf Sci, 2007, 254: 563

    31. [31]

      [31] Verho O, Nagendiran A, Johnston E V, Tai C W, Backvall J E. ChemCatChem, 2013, 5: 612

    32. [32]

      [32] Kumbhar A, Kamble S, Mane A, Jha R, Salunkhe R. J Organometal Chem, 2013, 738: 29

    33. [33]

      [33] Park S, Seo J G, Jung J C, Baeck S H, Kim T J, Chung Y M, Oh S H, Song I K. Catal Commun, 2009, 10: 1762

    34. [34]

      [34] Bae J A, Song K C, Jeon J K, Ko Y S, Park Y K, Yim J H. Microporous Mesoporous Mater, 2009, 123: 289

  • 加载中
    1. [1]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    2. [2]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    3. [3]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    4. [4]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    5. [5]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    6. [6]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    7. [7]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    8. [8]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    9. [9]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    10. [10]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    11. [11]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    12. [12]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    13. [13]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    14. [14]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    15. [15]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    16. [16]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    17. [17]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    18. [18]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    19. [19]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    20. [20]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

Metrics
  • PDF Downloads(0)
  • Abstract views(312)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return