Citation: Abdol R. Hajipour, Hirbod Karimi. Acetylation of alcohols and phenols under solvent-free conditions using copper zirconium phosphate[J]. Chinese Journal of Catalysis, ;2014, 35(12): 1982-1989. doi: 10.1016/S1872-2067(14)60185-6 shu

Acetylation of alcohols and phenols under solvent-free conditions using copper zirconium phosphate

  • Corresponding author: Abdol R. Hajipour, 
  • Received Date: 18 May 2014
    Available Online: 1 July 2014

    Fund Project: This work was supported by the Isfahan University of Technology(IUT) (IUT)

  • Copper zirconium phosphate nanoparticles have been used as an efficient catalyst for the acetylation of a wide range of alcohols and phenols with acetic anhydride in good to excellent yields under solvent-free conditions. The steric and electronic properties of the different substrates had a significant influence on the reaction conditions required to achieve the acetylation. The catalyst used in the current study was characterized by inductively-coupled plasma optical emission spectroscopy, energy dispersive spectroscopy, X-ray diffraction, N2 adsorption-desorption, scanning electron microscopy, and transmission electron microscopy. These analyses revealed that the interlayer distance in the catalyst increased from 7.5 to 8.0 Å when Cu2+ was intercalated between the layers, whereas the crystallinity of the material was reduced. This nanocatalyst could also be recovered and reused at least six times without any discernible decrease in its catalytic activity. This new method for the acetylation of alcohols and phenols has several key advantages, including mild and environmentally friendly reaction conditions, as well as good to excellent yields and a facile work-up.
  • 加载中
    1. [1]

      [1] Li F, Wei M, He J, Du Y B, Sun P, Evans D G, Duan X. Chin J Catal (李峰, 卫敏, 何静, 杜以波, 孔鹏, Evans, 段雪. 催化学报), 1999, 20: 514

    2. [2]

      [2] Sun L Y, Boo W J, Sue H J, Clearfield A. New J Chem, 2007, 31: 39

    3. [3]

      [3] Hajipour A R, Karimi H. Mater Lett, 2014, 116: 356

    4. [4]

      [4] Pet'kov V I, Markin A V, Shchelokov I A, Sukhanov M V, Smirnova N N. Russ J Phys Chem, 2007, 81: 1728

    5. [5]

      [5] Shi Q S, Tan S Z, Ouyang Y S, Yang Q H, Chen A M, Li W R, Shu X L, Feng J, Fang J, Chen Y B. Adv Mater Res, 2011, 150-151: 852

    6. [6]

      [6] Cai X, Dai G J, Tan S Z, Ouyang Y, Ouyang Y S, Shi Q S. Mater Lett, 2012, 67: 199

    7. [7]

      [7] Clearfield A, Kalnins J M. J Inorg Nucl Chem, 1978, 40: 1933

    8. [8]

      [8] Clearfield A, Kalnins J M. J Inorg Nucl Chem, 1976, 38: 849

    9. [9]

      [9] Allulli S, Ferragina C, La Ginestra A, Massucci M A, Tomassini N, Tomlinson A A G. J Chem Soc, Dalton Trans, 1976: 2115

    10. [10]

      [10] Khare S, Chokhare R. J Mol Catal A, 2012, 353-354: 138

    11. [11]

      [11] Alberti G, Bernasconi M G, Costantino U, Gill J S. J Chromatogr A, 1977, 132: 477

    12. [12]

      [12] Alberti G, Casciola M, Costantino U, Vivani R. Adv Mater, 1996, 8: 291

    13. [13]

      [13] Yang Y H, Dai G J, Tan S Z, Liu Y L, Shi Q S, Ouyang Y S. J Rare Earths, 2011, 29: 308

    14. [14]

      [14] Dai G J, Yu A L, Cai X, Shi Q S, Ouyang Y S, Tan S Z. J Rare Earths, 2012, 30: 820

    15. [15]

      [15] Zhang Q R, Du W, Pan B C, Pan B J, Zhang W M, Zhang Q J, Xu Z W, Zhang Q X. J Hazard Mater, 2008, 152: 469

    16. [16]

      [16] Costantino U, Szirtes L, Kuzmann E, Megyeri J, Lázár K. Solid State Ionics, 2001, 141-142: 359

    17. [17]

      [17] Khare S, Chokhare R. J Mol Catal A, 2011, 344: 83

    18. [18]

      [18] Iwamoto M, Nomura Y, Kagawa S. J Catal, 1981, 69: 234

    19. [19]

      [19] Izumi Y, Mizutani Y. Bull Chem Soc Jpn, 1979, 52: 3065

    20. [20]

      [20] Pylinina A I, Mikhalenko I I. Russ J Phys Chem, 2013, 87: 372

    21. [21]

      [21] Pylinina A I, Mikhalenko I I. Russ J Phys Chem, 2011, 85: 2109

    22. [22]

      [22] Hajipour A R, Karimi H, Karimzadeh M. Monatsh Chem, 2014, DOI: 10.1007/s00706-014-1222-9

    23. [23]

      [23] Gawande M B, Deshpande S S, Sonavane S U, Jayaram R V. J Mol Catal A, 2005, 241: 151

    24. [24]

      [24] Wang X Y, Hua W M, Yue Y H, Gao Z. Chem J Chin Univ, 2013, 34: 1913

    25. [25]

      [25] Yoon H J, Lee S M, Kim J H, Cho H J, Choi J W, Lee S H, Lee Y S. Tetrahedron Lett, 2008, 49: 3165

    26. [26]

      [26] Sharghi H, Jokar M, Doroodmand M M. Adv Synth Catal, 2011, 353: 426

    27. [27]

      [27] Taghavi S A, Moghadam M, Mohammadpoor-Baltork I, Tangestaninejad S, Mirkhani V, Khosropour A R. Inorg Chim Acta, 2011, 377: 159

    28. [28]

      [28] Montes I, Sanabria D, García M, Castro J, Fajardo J. J Chem Edu, 2006, 83: 628

    29. [29]

      [29] Reddy T S, Narasimhulu M, Suryakiran N, Mahesh K C, Ashalatha K, Venkateswarlu Y. Tetrahedron Lett, 2006, 47: 6825

    30. [30]

      [30] Prajapti S K, Nagarsenkar A, Babu B N. Tetrahedron Lett, 2014, 55: 1784

    31. [31]

      [31] Heravi M M, Behbahani F K, Zadsirjan V, Oskooie H A. J Braz Chem Soc, 2006, 17: 1045

    32. [32]

      [32] Yadav P, Lagarkha R, Balla Z A. Asian J Chem, 2010, 22: 5155

    33. [33]

      [33] Osiglio L, Romanelli G, Blanco M. J Mol Catal A, 2010, 316: 52

    34. [34]

      [34] Tamaddon F, Amrollahi M A, Sharafat L. Tetrahedron Lett, 2005, 46: 7841

    35. [35]

      [35] Dalpozzo R, De Nino A, Maiuolo L, Procopio A, Nardi M, Bartoli G, Romeo R. Tetrahedron Lett, 2003, 44: 5621

    36. [36]

      [36] Gupta R, Kumar V, Gupta M, Paul S, Gupta R. Indian J Chem, Sec B, 2008, 47: 1739

    37. [37]

      [37] Tayebee R, Cheravi F. Bull Korean Chem Soc, 2009, 30: 2899

    38. [38]

      [38] Liu Z H, Ma Q Q, Liu Y X, Wang Q M. Org Lett, 2014, 16: 236

    39. [39]

      [39] Chakraborti A K, Gulhane R, Shivani. Synthesis, 2004: 111

    40. [40]

      [40] Niknam K, Saberi D. Appl Catal A, 2009, 366: 220

    41. [41]

      [41] Lakshmi Kantam M, Aziz K, Likhar P R. Catal Commun, 2006, 7: 484

    42. [42]

      [42] Wang W J, Cheng W P, Shao L L, Yang J G. Catal Lett, 2008, 121: 77

    43. [43]

      [43] Liu Y, Liu L, Lu Y, Cai Y Q. Monatsh Chem, 2008, 139: 633

    44. [44]

      [44] Yue C B, Liu Q Q, Yi T F, Chen Y. Monatsh Chem, 2010, 141: 975

    45. [45]

      [45] Shirini F, Zolfigol M A, Abedini M. Monatsh Chem, 2009, 140: 1495

    46. [46]

      [46] Niknam K, Saberi D. Tetrahedron Lett, 2009, 50: 5210

    47. [47]

      [47] Shirini F, Khaligh N G. Chin J Catal (催化学报), 2013, 34: 695

    48. [48]

      [48] Hajjami M, Ghorbani-Choghamarani A, Norouzi M. Chin J Catal (催化学报), 2012, 33: 1661

    49. [49]

      [49] Nowrouzi N, Alizadeh S Z. Chin J Catal (催化学报), 2013, 34: 1787

    50. [50]

      [50] Ghorbani-Choghamarani A, Pourbahar N. Chin J Catal (催化学报), 2012, 33: 1470

    51. [51]

      [51] Farhadi S, Jahanara K. Chin J Catal (催化学报), 2014, 35: 368

    52. [52]

      [52] Zarei A, Hajipour A R, Khazdooz L. Synth Commun, 2011, 41: 1772

    53. [53]

      [53] Hajipour A R, Khazdooz L, Ruoho A E. J Chin Chem Soc, 2009, 56: 398

    54. [54]

      [54] Kumar P, Pandey R K, Bodas M S, Dagade S P, Dongare M K, Ramaswamy A V. J Mol Catal A, 2002, 181: 207

    55. [55]

      [55] Iqbal J, Srivastava R R. J Org Chem, 1992, 57: 2001

    56. [56]

      [56] Hajipour A R, Azizi G. Green Chem, 2013, 15: 1030

    57. [57]

      [57] Hajipour A R, Karimi H. Appl Catal A, 2014, 482: 99

    58. [58]

      [58] Egerton T A, Stone F S. J Chem Soc, Faraday Trans 1, 1973, 69: 22

    59. [59]

      [59] Sneddon J. Biochem Pharmacol, 1987, 36: 3723

    60. [60]

      [60] Chen S B, Ma Y B, Chen L, Xian K. Geochem J, 2010, 44: 233

    61. [61]

      [61] Sing K S W, Everett D H, Hawl R A W, Moscon L, Pierotti R A, Rouquerol J, Sieieniewska T. Pure Appl Chem, 1985, 57: 603

  • 加载中
    1. [1]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332

    2. [2]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    3. [3]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    4. [4]

      Wen-Jing LiJun-Bo WangYu-Heng LiuMo ZhangZhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001

    5. [5]

      Bohan ChenLiming GongJing FengMingji JinLiqing ChenZhonggao GaoWei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432

    6. [6]

      Wei SuXiaoyan LuoPeiyuan LiYing ZhangChenxiang LinKang WangJianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522

    7. [7]

      Yiran TaoChunlei DaiZhaoxiang XieXinru YouKaiwen LiJun WuHai Huang . Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chinese Chemical Letters, 2024, 35(8): 109170-. doi: 10.1016/j.cclet.2023.109170

    8. [8]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    9. [9]

      Yihao ZhangYang JiaoXianchao JiaQiaojia GuoChunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748

    10. [10]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    11. [11]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    12. [12]

      Yujie LiYa-Nan WangYin-Gen LuoHongcai YangJinrui RenXiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576

    13. [13]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    14. [14]

      Shenglan ZhouHaijian LiHongyi GaoAng LiTian LiShanshan ChengJingjing WangJitti KasemchainanJianhua YiFengqi ZhaoWengang Qu . Recent advances in metal-loaded MOFs photocatalysts: From single atom, cluster to nanoparticle. Chinese Chemical Letters, 2025, 36(1): 110142-. doi: 10.1016/j.cclet.2024.110142

    15. [15]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    16. [16]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    17. [17]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    18. [18]

      Zhiyu YuXiang LuoCheng ZhangXin LuXiaohui LiPan LiaoZhongqiu LiuRong ZhangShengtao WangZhiqiang YuGuochao Liao . Mitochondria-targeted carrier-free nanoparticles based on dihydroartemisinin against hepatocellular carcinoma. Chinese Chemical Letters, 2024, 35(10): 109519-. doi: 10.1016/j.cclet.2024.109519

    19. [19]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    20. [20]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

Metrics
  • PDF Downloads(0)
  • Abstract views(248)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return