Citation: Fei Ma, Zhenwu Ding, Wei Chu, Shixiong Hao, Tao Qi. Preparation of LaXCoO3 (X = Mg, Ca, Sr, Ce) catalysts and their performance for steam reforming of ethanol to hydrogen[J]. Chinese Journal of Catalysis, ;2014, 35(10): 1768-1778. doi: 10.1016/S1872-2067(14)60182-0 shu

Preparation of LaXCoO3 (X = Mg, Ca, Sr, Ce) catalysts and their performance for steam reforming of ethanol to hydrogen

  • Corresponding author: Wei Chu, 
  • Received Date: 25 April 2014
    Available Online: 28 June 2014

    Fund Project:

  • Perovskite nanocomposite catalysts LaXCoO3 (X = Mg, Ca, Sr, or Ce; n(La):n(X) = 3:2) have been prepared by a citric acid-complexing method and used for steam reforming of ethanol (SRE), leading to hydrogen generation. The samples were characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, N2 adsorption-desorption, and H2 temperature-programmed reduction. The effects of elemental substitution in the LaCoO3 perovskite were studied, and the catalytic performance and primary stability of the hydrogen production from SRE were investigated. In the highly substituted samples, only the Ce-doped sample was isolated as the pure perovskite phase. The presence of a Co3O4 phase in the Ca-doped or Sr-doped samples was beneficial for the reduction of the active Co component, while Sr-doped or Ce-doped samples showed good activity and stability. The sample incorporating Sr demonstrated better catalytic performance than those of other samples.
  • 加载中
    1. [1]

      [1] Tong D G, Chu W, Wu P, Gu G F, Zhang L. J Mater Chem A, 2013, 1: 358

    2. [2]

      [2] Liu Q H, Liao L W, Liu Z L, Dong X F. J Energy Chem, 2013, 22: 665

    3. [3]

      [3] Fishtik I, Alexander A, Datta R, Geana D. Int J Hydrogen Energy, 2000, 25: 31

    4. [4]

      [4] Vizcaíno A J, Carrero A, Calles J A. Catal Today, 2009, 146: 63

    5. [5]

      [5] Sun J, Wu F, Qiu X P, Wang F, Hao S J, Liu Y. Chin J Catal (孙杰, 吴锋, 邱新平, 王芳, 郝少军, 刘媛. 催化学报), 2004, 25: 551

    6. [6]

      [6] Zhang L F, Liu J, Li W, Guo C L, Zhang J L. J Nat Gas Chem, 2009, 18: 55

    7. [7]

      [7] Ma F, Chu W, Huang L H, Yu X P, Wu Y Y. Chin J Catal (马飞, 储伟, 黄利宏, 余晓鹏, 吴永永. 催化学报), 2011, 32: 970

    8. [8]

      [8] Pereira E B, Homs N, Martí S, Fierro J L G, de la Piscina P R. J Catal, 2008, 257: 206

    9. [9]

      [9] Birot A, Epron F, Descorme C, Duprez D. Appl Catal B, 2008, 79: 17

    10. [10]

      [10] Cai W J, Wang F G, Zhan E S, Van Veen A C, Mirodatos C, Shen W J. J Catal, 2008, 257: 96

    11. [11]

      [11] He L, Wu Q, Li T M. Nat Gas Chem Ind (何飗, 吴倩, 李佟茗. 天然气化工(Cl化学与化工)), 2010, 35(5): 5

    12. [12]

      [12] Vizcaíno A J, Carrero A, Calles J A. Int J Hydrogen Energy, 2007, 32: 1450

    13. [13]

      [13] Frusteri F, Freni S, Spadaro L, Chiodo V, Bonura G, Donato S, Cavallaro S. Catal Commun, 2004, 5: 611

    14. [14]

      [14] Pang X J, Chen Y Z, Dai R Q, Cui P. Chin J Catal (庞潇健, 陈亚中, 代瑞旗, 崔鹏. 催化学报), 2012, 33: 281

    15. [15]

      [15] Peng D Q, Liu N, Wang Y H. Chem Engineer (彭得群, 刘宁, 王玉和. 化学工程师), 2008, (1): 7

    16. [16]

      [16] Petrovic S, Pakic V, Jovanovic D M, Baricevic A T. Appl Catal B, 2006, 66: 249

    17. [17]

      [17] Balamurugan S, Xu M, Takayama-Muromachi E. J Solid State Chem, 2005, 178: 3431

    18. [18]

      [18] Hejtmanek J, Jirak Z, Knizek K, Marysko M, Veverka M, Autret C. J Magn Magn Mater, 2008, 320: e92

    19. [19]

      [19] Murthy P S R, Priolkar K R, Bhobe P A, Das A, Sarode P R, Nigam A K. J Magn Magn Mater, 2011, 323: 822

    20. [20]

      [20] Magalhes R N S H, Toniolo F S, da Silva V T, Schmal M. Appl Catal A, 2010, 388: 216

    21. [21]

      [21] Cui M S, Li M L, Zhang S L, Long Z Q, Cui D L, Huang X W. Chin J Nonferrous Metal (崔梅生, 李明来, 张顺利, 龙志奇, 崔大立, 黄小卫. 中国有色金属学报), 2004, 14: 1580

    22. [22]

      [22] Leontiou A A, Ladavos A K, Armatas G S, Trikalitis P N, Pomonis P T. Appl Catal A, 2004, 263: 227

    23. [23]

      [23] Sey B, Baghalha M, Kazemian H. Chem Eng J, 2009, 148: 306

    24. [24]

      [24] Bedel L, Roger A C, Rehspringer J L, Zimmermann Y, Kiennemann A. J Catal, 2005, 235: 279

    25. [25]

      [25] Ding R R, Li C, Wang L J, Hu R S. Appl Catal A, 2013, 464-465: 261

    26. [26]

      [26] Han X, Yu Y B, He H, Zhao J J. J Energy Chem, 2013, 22: 861

    27. [27]

      [27] Sun Y, Hla S S, Dffy G J, Cousins A J, French D, Morpeth L D, Edwards J H, Roberts D G. Int J Hydrogen Energy, 2011, 36: 79

    28. [28]

      [28] Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, Applications in Coordination, Organometallic, and Bioinorganic Chemistry. 6th Ed. New York: John Wiley & Sons, 2009. 110

    29. [29]

      [29] Rao G V S, Rao C N R, Ferraro J R. Appl Spectrosc, 1970, 24: 436

    30. [30]

      [30] Choi D H, Shim I B, Kim C S, Shaterian M. J Magn Magn Mater, 2008, 320: e575

    31. [31]

      [31] Salavati-Niasari M, Khansari A, Davar F. Inorg Chim Acta, 2009, 362: 4937

    32. [32]

      [32] Sharma Y, Sharma N, Subba Rao G V, Chowdari B V R. Solid State Ionics, 2008, 179: 587

    33. [33]

      [33] Stelmachowski P, Maniak G, Kaczmarczyk J, Zasada F, Piskorz W, Kotarba A, Sojka Z. Appl Catal B, 2014, 146: 105

    34. [34]

      [34] Hyman M P, Vohs J M. Surf Sci, 2011, 605: 383

  • 加载中
    1. [1]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    2. [2]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    3. [3]

      Yao Ma Xin Zhao Hongxu Chen Wei Wei Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045

    4. [4]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    5. [5]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    6. [6]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    7. [7]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    8. [8]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    9. [9]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    10. [10]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    11. [11]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    12. [12]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    13. [13]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    14. [14]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    15. [15]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    16. [16]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    17. [17]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    18. [18]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    19. [19]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    20. [20]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

Metrics
  • PDF Downloads(0)
  • Abstract views(480)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return