Citation:
Yi Zhang, D. A. J. Michel Ligthart, Peng Liu, Lu Gao, Tiny M. W. G. M. Verhoeven, Emiel J. M. Hensen. Size dependence of photocatalytic oxidation reactions of Rh nanoparticles dispersed on (Ga1-xZnx)(N1-xOx) support[J]. Chinese Journal of Catalysis,
;2014, 35(12): 1944-1954.
doi:
10.1016/S1872-2067(14)60181-9
-
Mixed Ga-Zn oxynitrides were synthesized using coprecipitation, wet-precipitation, and solid-solution methods. The oxynitrides were used as supports for Rh nanoparticle catalysts in photocatalytic water splitting, CO oxidation, and H2 oxidation. Mixed Ga-Zn oxynitrides produced by wet precipitation and nitridation had good visible-light-absorption properties and high surface areas, so they were used to support uniformly sized poly(vinylpyrrolidone)-stabilized Rh nanoparticles. The nanoparticle size range was 2-9 nm. These catalysts had negligible activity in photocatalytic H2 production by water splitting with methanol as a sacrificial agent. Other mixed Ga-Zn oxynitrides were also inactive. A reference sample provided by Domen also showed very low activity. The influence of particle size on Rh-catalyzed oxidation of CO and H2 was investigated. For CO oxidation, the activities of small particles were higher for particles with higher Rh oxidation degrees. The opposite holds for H2 oxidation.
-
-
-
[1]
[1] Maeda K, Takata T, Hara M, Saito N, Inoue Y, Koboyashi H, Domen K. J Am Chem Soc, 2005, 127: 8286
-
[2]
[2] Maeda K, Teramura K, Takata T, Hara M, Saito N, Toda K, Inoue Y, Kobayashi H, Domen K. J Phys Chem B, 2005, 109: 20504
-
[3]
[3] Maeda K, Teramura K, Lu D L, Takata T, Saito N, Inoue Y, Domen K. Nature, 2006, 440: 295
-
[4]
[4] Yashima M, Maeda K, Teramura K, Takata T, Domen K. Chem Phys Lett, 2005, 416: 225
-
[5]
[5] Yashima M, Maeda K, Teramura K, Takata T, Domen K. Mater Trans, 2006, 47: 295
-
[6]
[6] Sun X J, Maeda K, Le Faucheur M, Teramura K, Domen K. Appl Catal A, 2007, 327: 114
-
[7]
[7] Hirai T, Maeda K, Yoshida M, Kubota J, Ikeda S, Matsumura M, Domen K. J Phys Chem C, 2007, 111: 18853
-
[8]
[8] Maeda K, Teramura K, Domen K. J Catal, 2008, 254: 198
-
[9]
[9] Hisatomi T, Maeda K, Lu D L, Domen K. ChemSusChem, 2009, 2: 336
-
[10]
[10] Hisatomi T, Miyazaki K, Takanabe K, Maeda K, Kubota J, Sakata Y, Domen K. Chem Phys Lett, 2010, 486: 144
-
[11]
[11] Meada K, Hashiguchi H, Masuda H, Abe R, Domen K. J Phys Chem C, 2008, 112: 3447
-
[12]
[12] Boppana V B R, Doren D J, Lobo R F. J Mater Chem, 2010, 20: 9787
-
[13]
[13] Zou L, Xiang X, Wei M, Li F, Evans D G. Inorg Chem, 2008, 47: 1361
-
[14]
[14] Moriya Y, Takata T, Domen K. Coord Chem Rev, 2013, 257: 1957
-
[15]
[15] Adeli B, Taghipour F. ECS J Solid State Sci Technol, 2013, 2: Q118
-
[16]
[16] Han W Q, Liu Z X, Yu H G. Appl Phys Lett, 2010, 96: 183112
-
[17]
[17] Lee K, Tienes B M, Wilker M B, Schnitzenbaumer K J, Dukovic G. Nano Lett, 2012, 12: 3268
-
[18]
[18] Ward M J, Han W Q, Sham T K. J Phys Chem C, 2013, 117: 20332
-
[19]
[19] Li X H, Shao C L, Wang D, Zhang X, Zhang P, Liu Y C. Ceram Int, 2014, 40: 3425
-
[20]
[20] Li F, Duan X. Struct Bond, 2006, 119: 193
-
[21]
[21] Wang J P, Huang B B, Wang Z Y, Wang P, Cheng H F, Zheng Z X, Qin X Y, Zhang X Y, Dai Y, Whangbo M H. J Mater Chem, 2011, 21: 4562
-
[22]
[22] Mapa M, Thushara K S, Saha B, Chakraborty P, Janet C M, Viswanath R P, Nair C M, Murty K V G K, Gopinath C S. Chem Mater, 2009, 21: 2973
-
[23]
[23] Maeda K, Sakamoto N, Ikeda T, Ohtsuka H, Xiong A K, Lu D L, Kanehara M, Teranishi T, Domen K. Chem Eur J, 2010, 16: 7750
-
[24]
[24] Ikeda T, Xiong A K, Yoshinaga T, Maeda K, Domen K, Teranishi T. J Phys Chem C, 2013, 117: 2467
-
[25]
[25] Ligthart D A J M, van Santen R A, Hensen E J M. Angew Chem Int Ed, 2011, 50: 5306
-
[26]
[26] Ligthart D A J M, van Santen R A, Hensen E J M. J Catal, 2011, 280: 206
-
[27]
[27] Zhang Y, Ligthart D A J M, Quek X Y, Gao L, Hensen E J M. Int J Hydrogen Energy, 2014, 39: 11537
-
[28]
[28] Grass M E, Zhang Y W, Butcher D R, Park J Y, Li Y M, Bluhm H, Bratlie K M, Zhang T F, Somorjai G A. Angew Chem Int Ed, 2008, 47: 8893
-
[29]
[29] Aliaga C, Park J Y, Yamada Y, Lee H S, Tsung C K, Yang P D, Somorjai G A. J Phys Chem C, 2009, 113: 6150
-
[30]
[30] Yoshida M, Takanabe K, Maeda K, Ishikawa A, Kubota J, Sakata Y, Ikezawa Y, Domen K. J Phys Chem C, 2009, 113: 10151
-
[31]
[31] Sakamoto N, Ohtsuka H, Ikeda T, Maeda K, Lu D L, Kanehara M, Teramura K, Teranishi T, Domen K. Nanoscale, 2009, 1: 106
-
[32]
[32] Maeda K, Teramura K, Lu D L, Saito N, Inoue Y, Domen K. Angew Chem Int Ed, 2006, 45: 7806
-
[33]
[33] Maeda K, Teramura K, Lu D L, Saito N, Inoue Y, Domen K. J Phys Chem C, 2007, 111: 7554
-
[34]
[34] Coey J M D. Acta Crystallogr Sect B, 1970, 26: 1876
-
[35]
[35] Quek X Y, Guan Y J, Hensen E J M. Catal Today, 2012, 183: 72
-
[36]
[36] Crespo-Quesada M, Andanson J M, Yarulin A, Lim B, Xia Y N, Kiwi-Minsker L. Langmuir, 2011, 27: 7909
-
[37]
[37] Maeda K, Lu D L, Teramura K, Domen K. Energy Environ Sci, 2010, 3: 471
-
[38]
[38] Maeda K, Teramura K, Lu D L, Takata T, Saito N, Inoue Y, Domen K. J Phys Chem B, 2006, 110: 13753
-
[39]
[39] Kandiel T A, Dillet R, Robben L, Bahnemann D W. Catal Today, 2011, 161: 196
-
[40]
[40] Li Y X, Lu G X, Li S B. J Photochem Photobiol A, 2002, 152: 219
-
[41]
[41] Maeda K. personal communication
-
[42]
[42] Hahn C, Fardy M A, Nguyen C, Natera-Comte M, Andrews S C, Yang P D. Israel J Chem, 2012, 52: 1111
-
[43]
[43] Busser G W, Mei B, Muhler M. ChemSusChem, 2012, 5: 2200
-
[44]
[44] Dionigi F, Vesborg P C K, Pedersen T, Hansen O, Dahl S, Xiong A K, Maeda K, Domen K, Chorkendorff I. J Catal, 2012, 292: 26
-
[45]
[45] Song W Y, Jansen A P J, Degirmenci V, Ligthart D A J M, Hensen E J M. Chem Commun, 2013, 49: 3851
-
[46]
[46] Grass M E, Joo S H, Zhang Y W, Somorjai G A. J Phys Chem C, 2009, 113: 8616
-
[47]
[47] Joo S H, Park J Y, Renzas J R, Butcher D R, Huang W Y, Somorjai G A. Nano Lett, 2010, 10: 2709
-
[48]
[48] Park J Y, Aliaga C, Renzas J R, Lee H, Somorjai G A. Catal Lett, 2009, 129: 1
-
[49]
[49] Shimura K, Kawai H, Yoshida T, Yoshida H. Chem Commun, 2011, 47: 8958
-
[50]
[50] Shimura K, Kawai H, Yoshida T, Yoshida H. ACS Catal, 2012, 2: 2126
-
[51]
[51] Nilekar A U, Alayoglu S, Eichhorn B, Mavrikakis M. J Am Soc Chem, 2010, 132: 7418
-
[1]
-
-
-
[1]
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207
-
[2]
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
-
[3]
Tianli Hui , Tao Zheng , Xiaoluo Cheng , Tonghui Li , Rui Zhang , Xianghai Meng , Haiyan Liu , Zhichang Liu , Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520
-
[4]
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
-
[5]
Wenhao Chen , Jian Du , Hanbin Zhang , Hancheng Wang , Kaicheng Xu , Zhujun Gao , Jiaming Tong , Jin Wang , Junjun Xue , Ting Zhi , Longlu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168
-
[6]
Lina Wang , Hairu Wang , Qian Bu , Qiong Mei , Junbo Zhong , Bo Bai , Qizhao Wang . Al-O bridged NiFeOx/BiVO4 photoanode for exceptional photoelectrochemical water splitting. Chinese Chemical Letters, 2025, 36(4): 110139-. doi: 10.1016/j.cclet.2024.110139
-
[7]
Entian Cui , Yulian Lu , Zhaoxia Li , Zhilei Chen , Chengyan Ge , Jizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288
-
[8]
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
-
[9]
Rui Deng , Wenjie Jiang , Tianqi Yu , Jiali Lu , Boyao Feng , Panagiotis Tsiakaras , Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290
-
[10]
Shuai Liu , Wen Wu , Peili Zhang , Yunxuan Ding , Chang Liu , Yu Shan , Ke Fan , Fusheng Li . Mechanistic insights into acidic water oxidation by Mn(2,2′-bipyridine-6,6′-dicarboxylate)-based hydrogen-bonded organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100535-100535. doi: 10.1016/j.cjsc.2025.100535
-
[11]
Jumei Zhang , Ziheng Zhang , Gang Li , Hongjin Qiao , Hua Xie , Ling Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278
-
[12]
Zhipeng Wan , Hao Xu , Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298
-
[13]
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
-
[14]
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
-
[15]
Yang Yang , Jing-Li Luo , Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269
-
[16]
Xian Yan , Huawei Xie , Gao Wu , Fang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279
-
[17]
Zhiqiang Wang , Yajie Gao , Tianjun Wang , Wei Chen , Zefeng Ren , Xueming Yang , Chuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602
-
[18]
Guo-Hong Gao , Run-Ze Zhao , Ya-Jun Wang , Xiao Ma , Yan Li , Jian Zhang , Ji-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181
-
[19]
Hao WANG , Kun TANG , Jiangyang SHAO , Kezhi WANG , Yuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176
-
[20]
Qing Li , Yumei Feng , Yingjie Yu , Yazhou Chen , Yuhua Xie , Fang Luo , Zehui Yang . Engineering eg filling of RuO2 enables a robust and stable acidic water oxidation. Chinese Chemical Letters, 2025, 36(3): 110612-. doi: 10.1016/j.cclet.2024.110612
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(332)
- HTML views(21)