Citation: Yi Zhang, D. A. J. Michel Ligthart, Peng Liu, Lu Gao, Tiny M. W. G. M. Verhoeven, Emiel J. M. Hensen. Size dependence of photocatalytic oxidation reactions of Rh nanoparticles dispersed on (Ga1-xZnx)(N1-xOx) support[J]. Chinese Journal of Catalysis, ;2014, 35(12): 1944-1954. doi: 10.1016/S1872-2067(14)60181-9 shu

Size dependence of photocatalytic oxidation reactions of Rh nanoparticles dispersed on (Ga1-xZnx)(N1-xOx) support

  • Corresponding author: Emiel J. M. Hensen, 
  • Received Date: 15 May 2014
    Available Online: 26 June 2014

  • Mixed Ga-Zn oxynitrides were synthesized using coprecipitation, wet-precipitation, and solid-solution methods. The oxynitrides were used as supports for Rh nanoparticle catalysts in photocatalytic water splitting, CO oxidation, and H2 oxidation. Mixed Ga-Zn oxynitrides produced by wet precipitation and nitridation had good visible-light-absorption properties and high surface areas, so they were used to support uniformly sized poly(vinylpyrrolidone)-stabilized Rh nanoparticles. The nanoparticle size range was 2-9 nm. These catalysts had negligible activity in photocatalytic H2 production by water splitting with methanol as a sacrificial agent. Other mixed Ga-Zn oxynitrides were also inactive. A reference sample provided by Domen also showed very low activity. The influence of particle size on Rh-catalyzed oxidation of CO and H2 was investigated. For CO oxidation, the activities of small particles were higher for particles with higher Rh oxidation degrees. The opposite holds for H2 oxidation.
  • 加载中
    1. [1]

      [1] Maeda K, Takata T, Hara M, Saito N, Inoue Y, Koboyashi H, Domen K. J Am Chem Soc, 2005, 127: 8286

    2. [2]

      [2] Maeda K, Teramura K, Takata T, Hara M, Saito N, Toda K, Inoue Y, Kobayashi H, Domen K. J Phys Chem B, 2005, 109: 20504

    3. [3]

      [3] Maeda K, Teramura K, Lu D L, Takata T, Saito N, Inoue Y, Domen K. Nature, 2006, 440: 295

    4. [4]

      [4] Yashima M, Maeda K, Teramura K, Takata T, Domen K. Chem Phys Lett, 2005, 416: 225

    5. [5]

      [5] Yashima M, Maeda K, Teramura K, Takata T, Domen K. Mater Trans, 2006, 47: 295

    6. [6]

      [6] Sun X J, Maeda K, Le Faucheur M, Teramura K, Domen K. Appl Catal A, 2007, 327: 114

    7. [7]

      [7] Hirai T, Maeda K, Yoshida M, Kubota J, Ikeda S, Matsumura M, Domen K. J Phys Chem C, 2007, 111: 18853

    8. [8]

      [8] Maeda K, Teramura K, Domen K. J Catal, 2008, 254: 198

    9. [9]

      [9] Hisatomi T, Maeda K, Lu D L, Domen K. ChemSusChem, 2009, 2: 336

    10. [10]

      [10] Hisatomi T, Miyazaki K, Takanabe K, Maeda K, Kubota J, Sakata Y, Domen K. Chem Phys Lett, 2010, 486: 144

    11. [11]

      [11] Meada K, Hashiguchi H, Masuda H, Abe R, Domen K. J Phys Chem C, 2008, 112: 3447

    12. [12]

      [12] Boppana V B R, Doren D J, Lobo R F. J Mater Chem, 2010, 20: 9787

    13. [13]

      [13] Zou L, Xiang X, Wei M, Li F, Evans D G. Inorg Chem, 2008, 47: 1361

    14. [14]

      [14] Moriya Y, Takata T, Domen K. Coord Chem Rev, 2013, 257: 1957

    15. [15]

      [15] Adeli B, Taghipour F. ECS J Solid State Sci Technol, 2013, 2: Q118

    16. [16]

      [16] Han W Q, Liu Z X, Yu H G. Appl Phys Lett, 2010, 96: 183112

    17. [17]

      [17] Lee K, Tienes B M, Wilker M B, Schnitzenbaumer K J, Dukovic G. Nano Lett, 2012, 12: 3268

    18. [18]

      [18] Ward M J, Han W Q, Sham T K. J Phys Chem C, 2013, 117: 20332

    19. [19]

      [19] Li X H, Shao C L, Wang D, Zhang X, Zhang P, Liu Y C. Ceram Int, 2014, 40: 3425

    20. [20]

      [20] Li F, Duan X. Struct Bond, 2006, 119: 193

    21. [21]

      [21] Wang J P, Huang B B, Wang Z Y, Wang P, Cheng H F, Zheng Z X, Qin X Y, Zhang X Y, Dai Y, Whangbo M H. J Mater Chem, 2011, 21: 4562

    22. [22]

      [22] Mapa M, Thushara K S, Saha B, Chakraborty P, Janet C M, Viswanath R P, Nair C M, Murty K V G K, Gopinath C S. Chem Mater, 2009, 21: 2973

    23. [23]

      [23] Maeda K, Sakamoto N, Ikeda T, Ohtsuka H, Xiong A K, Lu D L, Kanehara M, Teranishi T, Domen K. Chem Eur J, 2010, 16: 7750

    24. [24]

      [24] Ikeda T, Xiong A K, Yoshinaga T, Maeda K, Domen K, Teranishi T. J Phys Chem C, 2013, 117: 2467

    25. [25]

      [25] Ligthart D A J M, van Santen R A, Hensen E J M. Angew Chem Int Ed, 2011, 50: 5306

    26. [26]

      [26] Ligthart D A J M, van Santen R A, Hensen E J M. J Catal, 2011, 280: 206

    27. [27]

      [27] Zhang Y, Ligthart D A J M, Quek X Y, Gao L, Hensen E J M. Int J Hydrogen Energy, 2014, 39: 11537

    28. [28]

      [28] Grass M E, Zhang Y W, Butcher D R, Park J Y, Li Y M, Bluhm H, Bratlie K M, Zhang T F, Somorjai G A. Angew Chem Int Ed, 2008, 47: 8893

    29. [29]

      [29] Aliaga C, Park J Y, Yamada Y, Lee H S, Tsung C K, Yang P D, Somorjai G A. J Phys Chem C, 2009, 113: 6150

    30. [30]

      [30] Yoshida M, Takanabe K, Maeda K, Ishikawa A, Kubota J, Sakata Y, Ikezawa Y, Domen K. J Phys Chem C, 2009, 113: 10151

    31. [31]

      [31] Sakamoto N, Ohtsuka H, Ikeda T, Maeda K, Lu D L, Kanehara M, Teramura K, Teranishi T, Domen K. Nanoscale, 2009, 1: 106

    32. [32]

      [32] Maeda K, Teramura K, Lu D L, Saito N, Inoue Y, Domen K. Angew Chem Int Ed, 2006, 45: 7806

    33. [33]

      [33] Maeda K, Teramura K, Lu D L, Saito N, Inoue Y, Domen K. J Phys Chem C, 2007, 111: 7554

    34. [34]

      [34] Coey J M D. Acta Crystallogr Sect B, 1970, 26: 1876

    35. [35]

      [35] Quek X Y, Guan Y J, Hensen E J M. Catal Today, 2012, 183: 72

    36. [36]

      [36] Crespo-Quesada M, Andanson J M, Yarulin A, Lim B, Xia Y N, Kiwi-Minsker L. Langmuir, 2011, 27: 7909

    37. [37]

      [37] Maeda K, Lu D L, Teramura K, Domen K. Energy Environ Sci, 2010, 3: 471

    38. [38]

      [38] Maeda K, Teramura K, Lu D L, Takata T, Saito N, Inoue Y, Domen K. J Phys Chem B, 2006, 110: 13753

    39. [39]

      [39] Kandiel T A, Dillet R, Robben L, Bahnemann D W. Catal Today, 2011, 161: 196

    40. [40]

      [40] Li Y X, Lu G X, Li S B. J Photochem Photobiol A, 2002, 152: 219

    41. [41]

      [41] Maeda K. personal communication

    42. [42]

      [42] Hahn C, Fardy M A, Nguyen C, Natera-Comte M, Andrews S C, Yang P D. Israel J Chem, 2012, 52: 1111

    43. [43]

      [43] Busser G W, Mei B, Muhler M. ChemSusChem, 2012, 5: 2200

    44. [44]

      [44] Dionigi F, Vesborg P C K, Pedersen T, Hansen O, Dahl S, Xiong A K, Maeda K, Domen K, Chorkendorff I. J Catal, 2012, 292: 26

    45. [45]

      [45] Song W Y, Jansen A P J, Degirmenci V, Ligthart D A J M, Hensen E J M. Chem Commun, 2013, 49: 3851

    46. [46]

      [46] Grass M E, Joo S H, Zhang Y W, Somorjai G A. J Phys Chem C, 2009, 113: 8616

    47. [47]

      [47] Joo S H, Park J Y, Renzas J R, Butcher D R, Huang W Y, Somorjai G A. Nano Lett, 2010, 10: 2709

    48. [48]

      [48] Park J Y, Aliaga C, Renzas J R, Lee H, Somorjai G A. Catal Lett, 2009, 129: 1

    49. [49]

      [49] Shimura K, Kawai H, Yoshida T, Yoshida H. Chem Commun, 2011, 47: 8958

    50. [50]

      [50] Shimura K, Kawai H, Yoshida T, Yoshida H. ACS Catal, 2012, 2: 2126

    51. [51]

      [51] Nilekar A U, Alayoglu S, Eichhorn B, Mavrikakis M. J Am Soc Chem, 2010, 132: 7418

  • 加载中
    1. [1]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

    2. [2]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    3. [3]

      Tianli Hui Tao Zheng Xiaoluo Cheng Tonghui Li Rui Zhang Xianghai Meng Haiyan Liu Zhichang Liu Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520

    4. [4]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    5. [5]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    6. [6]

      Lina WangHairu WangQian BuQiong MeiJunbo ZhongBo BaiQizhao Wang . Al-O bridged NiFeOx/BiVO4 photoanode for exceptional photoelectrochemical water splitting. Chinese Chemical Letters, 2025, 36(4): 110139-. doi: 10.1016/j.cclet.2024.110139

    7. [7]

      Entian CuiYulian LuZhaoxia LiZhilei ChenChengyan GeJizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288

    8. [8]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    9. [9]

      Rui Deng Wenjie Jiang Tianqi Yu Jiali Lu Boyao Feng Panagiotis Tsiakaras Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290

    10. [10]

      Shuai Liu Wen Wu Peili Zhang Yunxuan Ding Chang Liu Yu Shan Ke Fan Fusheng Li . Mechanistic insights into acidic water oxidation by Mn(2,2′-bipyridine-6,6′-dicarboxylate)-based hydrogen-bonded organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100535-100535. doi: 10.1016/j.cjsc.2025.100535

    11. [11]

      Jumei ZhangZiheng ZhangGang LiHongjin QiaoHua XieLing Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278

    12. [12]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    13. [13]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    14. [14]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    15. [15]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    16. [16]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    17. [17]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    18. [18]

      Guo-Hong GaoRun-Ze ZhaoYa-Jun WangXiao MaYan LiJian ZhangJi-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181

    19. [19]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    20. [20]

      Qing LiYumei FengYingjie YuYazhou ChenYuhua XieFang LuoZehui Yang . Engineering eg filling of RuO2 enables a robust and stable acidic water oxidation. Chinese Chemical Letters, 2025, 36(3): 110612-. doi: 10.1016/j.cclet.2024.110612

Metrics
  • PDF Downloads(0)
  • Abstract views(332)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return