Citation: K. Vignarooban, J. Lin, A. Arvay, S. Kolli, I. Kruusenberg, K. Tammeveski, L. Munukutla, A. M. Kannan. Nano-electrocatalyst materials for low temperature fuel cells: A review[J]. Chinese Journal of Catalysis, ;2015, 36(4): 458-472. doi: 10.1016/S1872-2067(14)60175-3 shu

Nano-electrocatalyst materials for low temperature fuel cells: A review

  • Received Date: 6 April 2014
    Available Online: 20 May 2014

  • Low temperature fuel cells are an attractive technology for transportation and residential applications due to their quick start up and shut down capabilities. This review analyzed the current status of nanocatalysts for proton exchange membrane fuel cells and alkaline membrane fuel cells. The preparation process influences the performance of the nanocatalyst. Several synthesis methods are covered for noble and non-noble metal catalysts on various catalyst supports including carbon nanotubes, carbon nanofibers, nanowires, and graphenes. Ex situ and in situ characterization methods like scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and fuel cell testing of the nanocatalysts on various supports for both proton exchange and alkaline membrane fuel cells are discussed. The accelerated durability estimate of the nanocatalysts, predicted by measuring changes in the electrochemically active surface area using a voltage cycling method, is considered one of the most reliable and valuable method for establishing durability.
  • 加载中
    1. [1]

      [1] Schell A, Peng H, Tran D, Stamos E, Lin C, Kim M. Annual Rev Control, 2005, 29(1): 159

    2. [2]

      [2] EG & G Technical Services Inc. Fuel Cell Handbook. 7th Ed. West Virginia, USA: US Department of Energy, 2004

    3. [3]

      [3] Singhal S C. Electrochem Soc Interface, 2007, 16(4): 41

    4. [4]

      [4] Slade S, Campbell S A, Ralph T R, Walsh F C. J Electrochem Soc, 2002, 149: A1556

    5. [5]

      [5] Steele B C H, Heinzel A. Nature, 2001, 414: 345

    6. [6]

      [6] Rajesh B, Piotr Z. Nature, 2006, 443: 63

    7. [7]

      [7] Technical Plan - Fuel Cells - 2012, (http://www1.eere.energy.gov/ hydrogenandfuelcells/mypp/pdfs/fuel_cells.pdf), Accessed on September 14, 2013

    8. [8]

      [8] Debe M K. Nature, 2012, 486: 43

    9. [9]

      [9] Antolini E. Appl Catal B, 2009, 88: 1

    10. [10]

      [10] Wang X, Li W Z, Chen Z W, Waje M, Yan Y S. J Power Sources, 2006, 158: 154

    11. [11]

      [11] Wu J F, Yuan X Z, Martin J J, Wang H J, Zhang J J, Shen J, Wu S H, Merida W. J Power Sources, 2008, 184: 104

    12. [12]

      [12] Iijima S. Nature, 1991, 354: 56

    13. [13]

      [13] Li J, Papadopoulos C, Xu J M, Moskovits M. Appl Phys Lett, 1999, 75: 367

    14. [14]

      [14] Zhang D H, Ryu K, Liu X L, Polikarpov E, Ly J, Tompson M E, Zhou C W. Nano Lett, 2006, 6: 1880

    15. [15]

      [15] Baughman R H, Zakhidov A A, de Heer W A. Science, 2002, 297: 787

    16. [16]

      [16] Meyyappan M. Carbon Nanotubes - Science and Applications. 1st Ed. Boston: CRC Press, 2005

    17. [17]

      [17] Vashist S K, Zheng D, Al-Rubeaan K, Luong J H T, Sheu F S. Biotechnol Adv, 2011, 29: 169

    18. [18]

      [18] Shang N G, Tan Y Y, Stolojan V, Papakonstantinou P, Silva S R P. Nanotechnology, 2010, 21: 505604/1

    19. [19]

      [19] Kamavaram V, Veedu V, Kannan A M. J Power Sources, 2009, 188: 51

    20. [20]

      [20] Lin J F, Kamavaram V, Kannan A M. J Power Sources, 2010, 195: 466

    21. [21]

      [21] Bessel C A, Laubernds K, Rodriguez N M, Baker R T K. J Phys Chem B, 2001, 105: 1115

    22. [22]

      [22] Debe M K, Schmoeckel A K, Vernstrorn G D, Atanasoski R. J Power Sources, 2006, 161: 1002

    23. [23]

      [23] Toebes M L, van der Lee M, Tang L M, in 't Veld M H H, Bitter J H, van Dillen A J, de Jong K P. J Phys Chem B, 2004, 108: 11611

    24. [24]

      [24] Tang H, Chen J H, Nie L H, Liu D Y, Deng W, Kuang Y F, Yao S Z. J Colloid Interface Sci, 2004, 269: 26

    25. [25]

      [25] Sarac M F, Wilson R M, Johnston-Peck A C, Wang J W, Pearce R, Klein K L, Melechko A V, Tracy J B. ACS Appl Mater Interfaces, 2011, 3: 936

    26. [26]

      [26] Eastcott J I, Easton E B. Electrochim Acta, 2009, 54: 3460

    27. [27]

      [27] Anderson M L, Stroud R M, Rolison D R. Nano Lett, 2002, 2: 235

    28. [28]

      [28] Zhang L, Kim J, Dy E, Ban S, Tsay K C, Kawai H, Shi Z, Zhang J J. Electrochim Acta, 2013, 108: 480

    29. [29]

      [29] Sharma S, Pollet B G. J Power Sources, 2012, 208: 96

    30. [30]

      [30] Song S Q, Liang Y R, Li Z H, Wang Y, Fu R W, Wu D C, Tsiakaras P. Appl Catal B, 2010, 98: 132

    31. [31]

      [31] Schniepp H C, Li J L, McAllister M J, Sai H, Herrera-Alonso M, Adamson D H, Prud'homme R K, Car R, Saville D A, Aksay I A. J Phys Chem B, 2006, 110: 8535

    32. [32]

      [32] McAllister M J, Li J L, Adamson D H, Schniepp H C, Abdala A A, Liu J, Herrera-Alonso M, Milius D L, Car R, Prud'homme R K, Aksay I A. Chem Mater, 2007, 19: 4396

    33. [33]

      [33] Marinkas A, Arena F, Mitzel J, Prinz G M, Heinzel A, Peinecke V, Natter H. Carbon, 2013, 58: 139

    34. [34]

      [34] Cui C H, Gan L, Heggen M, Rudi S, Strasser P. Nat Mater, 2013, 12: 765

    35. [35]

      [35] Gasteiger H A, Kocha S S, Sompalli B, Wagner F T. Appl Catal B, 2005, 56: 9

    36. [36]

      [36] Mukerjee S, Srinivasan S. J Electroanal Chem, 1993, 357: 201

    37. [37]

      [37] Esmaeilifar A, Rowshanzamir S, Eikani M H, Ghazanfari E. Energy, 2010, 35: 3941

    38. [38]

      [38] Li W Z, Chen Z W, Xu L B, Yan Y S. J Power Sources, 2010, 195: 2534

    39. [39]

      [39] Calvillo L, Gangeri M, Perathoner S, Centi G, Moliner R, Lazaro M J. Int J Hydrogen Energy, 2011, 36: 9805

    40. [40]

      [40] Zhu H, Li X W, Wang F H. Int J Hydrogen Energy, 2011, 36: 9151

    41. [41]

      [41] Xu Z, Zhang H M, Liu S S, Zhang B S, Zhong H X, Su D S. Int J Hydrogen Energy, 2012, 37: 17978

    42. [42]

      [42] Moreira J, del Angel P, Ocampo A L, Sebastian P J, Montoya J A, Castellanos R H. Int J Hydrogen Energy, 2004, 29: 915

    43. [43]

      [43] Li B, Qiao J L, Zheng J S, Yang D J, Ma J X. Int J Hydrogen Energy, 2009, 34: 5144

    44. [44]

      [44] Zhang H J, Yuan X, X Sun L L, Yang J H, Ma Z F, Shao Z P. Electrochim Acta, 2012, 77: 324

    45. [45]

      [45] Henry C R. Prog Surf Sci, 2005, 80: 92

    46. [46]

      [46] Wilson G J, Matijasevich A S, Mitchell D R G, Schulz J C, Will G D. Langmuir, 2006, 22: 2016

    47. [47]

      [47] Reetz M T, Schulenburg H, Lopez M, Spliethoff B, Tesche B. Chimia, 2004, 58: 896

    48. [48]

      [48] Shen J F, Huang W S, Wu L P, Hu Y Z, Ye M X. Composites Part A, 2007, 38: 1331

    49. [49]

      [49] Sheng W. [PhD Dissertation]. Boston: MIT, 2010

    50. [50]

      [50] Bonnemann H, Nagabhushana K. J New Mater Electrochem Systems, 2004, 7(2): 93

    51. [51]

      [51] Hashim A A. The Delivery of Nanoparticles. Chapter 19. Croatia: InTech, 2012. 406

    52. [52]

      [52] Grolleau C, Coutanceau C, Pierre F, Leger J M. Electrochim Acta, 2008, 53: 7157

    53. [53]

      [53] Lin J F, Adame A, Kannan A M. J Electrochem Soc, 2010, 157: B846

    54. [54]

      [54] Bronstein L M. Top Curr Chem, 2003, 226: 55

    55. [55]

      [55] Liu B, Creager S. J Power Sources, 2010, 195: 1812

    56. [56]

      [56] Zhang Y, Erkey C. J Supercritical Fluids, 2006, 38: 252

    57. [57]

      [57] Lin J F, Mason C W, Adame A, Liu X, Peng X H, Kannan A M. Electrochim Acta, 2010, 55: 6496

    58. [58]

      [58] Harish S, Baranton S, Coutanceau C, Joseph J. J Power Sources, 2012, 214: 33

    59. [59]

      [59] Fievet F, Lagier J P, Blin B, Beaudoin B, Figlarz M. Solid State Ionics, 1989, 32-33: 198

    60. [60]

      [60] Liu Z L, Gan L M, Hong L, Chen W X, Lee J Y. J Power Sources, 2005, 139: 73

    61. [61]

      [61] Lebegue E, Baranton S, Coutanceau C. J Power Sources, 2011, 196: 920

    62. [62]

      [62] White R J, Luque R, Budarin V L, Clark J H, Macquarrie D J. Chem Soc Rev, 2009, 38: 481

    63. [63]

      [63] Saminathan K, Kamavaram V, Veedu V, Kannan A M. Int J Hydrogen Energy, 2009, 34: 3838

    64. [64]

      [64] Mehta V, Cooper J S. J Power Sources, 2003, 114: 32

    65. [65]

      [65] Jung D S, Park S B, Kang Y C. Korean J Chem Eng, 2010, 27: 1621

    66. [66]

      [66] Morse J D, Jankowski A F, Graff R T, Hayes J P. J Vacuum Sci Technol A, 2000, 18: 2003

    67. [67]

      [67] Girishkumar G, Rettker M, Underhile R, Binz D, Vinodgopal K, McGinn P, Kamat P. Langmuir, 2005, 21: 8487

    68. [68]

      [68] Wee J H, Lee K Y, Kim S H. J Power Sources, 2007, 165: 667

    69. [69]

      [69] Basu D, Basu S. Electrochim Acta, 2011, 56: 7758

    70. [70]

      [70] Tamasauskaite-Tamasiunaite L, Balciunaite A, Vaiciukeviciene A, Selskis A, Pakstas V. J Power Sources, 2012, 208: 242

    71. [71]

      [71] Ramesh K V, Shukla A K. J Power Sources, 1987, 19: 279

    72. [72]

      [72] Zhiani M, Gasteiger H A, Piana M, Catanorchi S. Int J Hydrogen Energy, 2011, 36: 5110

    73. [73]

      [73] Lai C L, Kolla P, Zhao Y, Fong H, Smirnova A L. Electrochim Acta, 2014, 130: 431

    74. [74]

      [74] Jasinski R J. Nature, 1964, 201: 1212

    75. [75]

      [75] Zagal J H. Coord Chem Rev, 1992, 119: 89

    76. [76]

      [76] Vasudevan P, Santosh, Mann N, Tyagi S. Transition Metal Chem, 1990, 15: 81

    77. [77]

      [77] Schilling T, Okunola A, Masa J, Schuhmann W, Bron M. Electrochim Acta, 2010, 55: 7597

    78. [78]

      [78] Tarasevich M R, Zhutaeva G V, Radina M V, Karichev Z R, Teishev E A, Miners J H, Goueres P, Sanchez-Corteron E. Russ J Electrochem, 2003, 39: 1094

    79. [79]

      [79] Baker R, Wilkinson D P, Zhang J J. Electrochim Acta, 2008, 53: 6906

    80. [80]

      [80] Zagal J, Paez M, Tanaka A A, Dos Santos Junior J R, Linkous C A. J Electroanal Chem, 1992, 339: 13

    81. [81]

      [81] Ramirez G, Trollund E, Isaacs M, Armijo F, Zagal J, Costamagna J, Aguirre M J. Electroanalysis, 2002, 14: 540

    82. [82]

      [82] Tse Y H, Janda P, Lam H, Zhang J J, Pietro W J, Lever A B P. J Porphyrins Phthalocyanines, 1997, 1 (1): 3

    83. [83]

      [83] Collman J P, Elliott C M, Halbert T R, Tovrog B S. Proc Nat Acad Sci USA, 1977, 74: 18

    84. [84]

      [84] Durand R R, Bencosme C S, Collman J P, Anson F C. J Am Chem Soc, 1983, 105: 2710

    85. [85]

      [85] Tanaka A A, Fierro C, Scherson D A, Yeager E. Mater Chem Phys, 1989, 22: 431

    86. [86]

      [86] Ding L, Dai X F, Lin R, Wang H J, Qiao J L. J Electrochem Soc, 2012, 159: F577

    87. [87]

      [87] Kruusenberg I, Mondal J, Matisen L, Sammelselg V, Tammeveski K. Electrochem Commun, 2013, 33: 18

    88. [88]

      [88] Zagal J H, Griveau S, Ozoemena K I, Nyokong T, Bedioui F. J Nanosci Nanotechnol, 2009, 9: 2201

    89. [89]

      [89] Morozan A, Campidelli S, Filoramo A, Jousselme B, Palacin S. Carbon, 2011, 49: 4839

    90. [90]

      [90] Kruusenberg I, Matisen L, Tammeveski K. J Nanosci Nanotechnol, 2013, 13: 621

    91. [91]

      [91] Okunola A, Kowalewska B, Bron M, Kulesza P J, Schuhmann W. Electrochim Acta, 2009, 54: 1954

    92. [92]

      [92] Yamazaki S, Yamada Y, Ioroi T, Fujiwara N, Siroma Z, Yasuda K, Miyazaki Y. J Electroanal Chem, 2005, 576: 253

    93. [93]

      [93] Mamuru S A, Ozoemena K I. Electroanalysis, 2010, 22: 985

    94. [94]

      [94] Lalande G, Cote R, Guay D, Dodelet J P, Weng L T, Bertrand P. Electrochim Acta, 1997, 42: 1379

    95. [95]

      [95] Jahnke H, Schonborn M., Zimmermann G. Top Curr Chem, 1976, 61: 133

    96. [96]

      [96] Ramavathu L N, Maniam K K, Gopalram K, Chetty R. J Appl Electrochem, 2012, 42: 945

    97. [97]

      [97] Kruusenberg I, Matisen L, Tammeveski K. Int J Electrochem Sci, 2013, 8 (1): 1057

    98. [98]

      [98] Kruusenberg I, Matisen L, Shah Q, Kannan A M, Tammeveski K. Int J Hydrogen Energy, 2012, 37: 4406

    99. [99]

      [99] Steigerwalt E S, Deluga G A, Cliffel D E, Lukehart C M. J Phys Chem B, 2001, 105: 8097

    100. [100]

      [100] Ohgai T. In: Peng X H ed. Nanowires - Recent Advances. Shanghai, China: InTech, 2012. 101

    101. [101]

      [101] Brunauer S, Emmett P H, Teller E. J Am Chem Soc, 1938, 60: 309

    102. [102]

      [102] Pozio A, Francesco M D, Cemmi A, Cardellini F, Giorgi L. J Power Sources, 2002, 105: 13

    103. [103]

      [103] Gao H L, Liao S J, Zeng J H, Xie Y C, Dang D. Electrochim Acta, 2011, 56: 2024

    104. [104]

      [104] Ohyagi S, Matsuda T, Iseki Y, Sasaki T, Kaito C. J Power Sources, 2011, 196: 3743

    105. [105]

      [105] Mench M, Kumbur E C, Veziroglu T N. Polymer Electrolyte Fuel Cell Degradation. Oxford: Elsevier, 2011. 472

    106. [106]

      [106] Bellows R J, MarucchiSoos E P, Buckley D T. Ind Eng Chem Res, 1996, 35: 1235

    107. [107]

      [107] Ohyagi S, Sasaki T. Electrochim Acta, 2013, 102: 336

  • 加载中
    1. [1]

      Guoliang GaoGuangzhen ZhaoGuang ZhuBowen SunZixu SunShunli LiYa-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557

    2. [2]

      Ping Liu Fei Yu . Covalent organic framework ionomers for medium-temperature fuel cells. Chinese Journal of Structural Chemistry, 2025, 44(4): 100465-100465. doi: 10.1016/j.cjsc.2024.100465

    3. [3]

      Jiaqi LinPupu YangYimin JiangShiqian DuDongcai ZhangGen HuangJinbo WangJun WangQie LiuMiaoyu LiYujie WuPeng LongYangyang ZhouLi TaoShuangyin Wang . Surface decoration prompting the decontamination of active sites in high-temperature proton exchange membrane fuel cells. Chinese Chemical Letters, 2024, 35(11): 109435-. doi: 10.1016/j.cclet.2023.109435

    4. [4]

      Wenxuan YangLong ShangXiaomeng LiuSihan ZhangHaixia LiZhenhua YanJun Chen . Ultrafast synthesis of nanocrystalline spinel oxides by Joule-heating method. Chinese Chemical Letters, 2024, 35(11): 109501-. doi: 10.1016/j.cclet.2024.109501

    5. [5]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    6. [6]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

    7. [7]

      Zhiqing GeZuxiong PanShuo YanBaoying ZhangXiangyu ShenMozhen WangXuewu Ge . Novel high-temperature thermochromic polydiacetylene material and its application as thermal indicator. Chinese Chemical Letters, 2024, 35(11): 109850-. doi: 10.1016/j.cclet.2024.109850

    8. [8]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277

    9. [9]

      Yaxin SunHuiyu LiShiquan GuoCongju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418

    10. [10]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

    11. [11]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    12. [12]

      Meng WangYan ZhangYunbo YuWenpo ShanHong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928

    13. [13]

      Linjing LiWenlai XuJianyong NingYaping ZhongChuyue ZhangJiane ZuoZhicheng Pan . Revealing the intrinsic mechanisms for accelerating nitrogen removal efficiency in the Anammox reactor by adding Fe(II) at low temperature. Chinese Chemical Letters, 2024, 35(8): 109243-. doi: 10.1016/j.cclet.2023.109243

    14. [14]

      Yiwen XuChaozheng HeChenxu ZhaoLing Fu . Single-atom Ti doping on S-vacancy two-dimensional CrS2 as a catalyst for ammonia synthesis: A DFT study. Chinese Chemical Letters, 2025, 36(4): 109797-. doi: 10.1016/j.cclet.2024.109797

    15. [15]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

    16. [16]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    17. [17]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    18. [18]

      Yueying YangHuiru XieXinbo YuYang LiuHui WangHua LiLixia Chen . Design, synthesis and evaluation of the first DYRK1A degrader for promoting the proliferation of pancreatic β-cells. Chinese Chemical Letters, 2024, 35(11): 109570-. doi: 10.1016/j.cclet.2024.109570

    19. [19]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    20. [20]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

Metrics
  • PDF Downloads(355)
  • Abstract views(567)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return