Citation:
K. Vignarooban, J. Lin, A. Arvay, S. Kolli, I. Kruusenberg, K. Tammeveski, L. Munukutla, A. M. Kannan. Nano-electrocatalyst materials for low temperature fuel cells: A review[J]. Chinese Journal of Catalysis,
;2015, 36(4): 458-472.
doi:
10.1016/S1872-2067(14)60175-3
-
Low temperature fuel cells are an attractive technology for transportation and residential applications due to their quick start up and shut down capabilities. This review analyzed the current status of nanocatalysts for proton exchange membrane fuel cells and alkaline membrane fuel cells. The preparation process influences the performance of the nanocatalyst. Several synthesis methods are covered for noble and non-noble metal catalysts on various catalyst supports including carbon nanotubes, carbon nanofibers, nanowires, and graphenes. Ex situ and in situ characterization methods like scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and fuel cell testing of the nanocatalysts on various supports for both proton exchange and alkaline membrane fuel cells are discussed. The accelerated durability estimate of the nanocatalysts, predicted by measuring changes in the electrochemically active surface area using a voltage cycling method, is considered one of the most reliable and valuable method for establishing durability.
-
-
-
[1]
[1] Schell A, Peng H, Tran D, Stamos E, Lin C, Kim M. Annual Rev Control, 2005, 29(1): 159
-
[2]
[2] EG & G Technical Services Inc. Fuel Cell Handbook. 7th Ed. West Virginia, USA: US Department of Energy, 2004
-
[3]
[3] Singhal S C. Electrochem Soc Interface, 2007, 16(4): 41
-
[4]
[4] Slade S, Campbell S A, Ralph T R, Walsh F C. J Electrochem Soc, 2002, 149: A1556
-
[5]
[5] Steele B C H, Heinzel A. Nature, 2001, 414: 345
-
[6]
[6] Rajesh B, Piotr Z. Nature, 2006, 443: 63
-
[7]
[7] Technical Plan - Fuel Cells - 2012, (http://www1.eere.energy.gov/ hydrogenandfuelcells/mypp/pdfs/fuel_cells.pdf), Accessed on September 14, 2013
-
[8]
[8] Debe M K. Nature, 2012, 486: 43
-
[9]
[9] Antolini E. Appl Catal B, 2009, 88: 1
-
[10]
[10] Wang X, Li W Z, Chen Z W, Waje M, Yan Y S. J Power Sources, 2006, 158: 154
-
[11]
[11] Wu J F, Yuan X Z, Martin J J, Wang H J, Zhang J J, Shen J, Wu S H, Merida W. J Power Sources, 2008, 184: 104
-
[12]
[12] Iijima S. Nature, 1991, 354: 56
-
[13]
[13] Li J, Papadopoulos C, Xu J M, Moskovits M. Appl Phys Lett, 1999, 75: 367
-
[14]
[14] Zhang D H, Ryu K, Liu X L, Polikarpov E, Ly J, Tompson M E, Zhou C W. Nano Lett, 2006, 6: 1880
-
[15]
[15] Baughman R H, Zakhidov A A, de Heer W A. Science, 2002, 297: 787
-
[16]
[16] Meyyappan M. Carbon Nanotubes - Science and Applications. 1st Ed. Boston: CRC Press, 2005
-
[17]
[17] Vashist S K, Zheng D, Al-Rubeaan K, Luong J H T, Sheu F S. Biotechnol Adv, 2011, 29: 169
-
[18]
[18] Shang N G, Tan Y Y, Stolojan V, Papakonstantinou P, Silva S R P. Nanotechnology, 2010, 21: 505604/1
-
[19]
[19] Kamavaram V, Veedu V, Kannan A M. J Power Sources, 2009, 188: 51
-
[20]
[20] Lin J F, Kamavaram V, Kannan A M. J Power Sources, 2010, 195: 466
-
[21]
[21] Bessel C A, Laubernds K, Rodriguez N M, Baker R T K. J Phys Chem B, 2001, 105: 1115
-
[22]
[22] Debe M K, Schmoeckel A K, Vernstrorn G D, Atanasoski R. J Power Sources, 2006, 161: 1002
-
[23]
[23] Toebes M L, van der Lee M, Tang L M, in 't Veld M H H, Bitter J H, van Dillen A J, de Jong K P. J Phys Chem B, 2004, 108: 11611
-
[24]
[24] Tang H, Chen J H, Nie L H, Liu D Y, Deng W, Kuang Y F, Yao S Z. J Colloid Interface Sci, 2004, 269: 26
-
[25]
[25] Sarac M F, Wilson R M, Johnston-Peck A C, Wang J W, Pearce R, Klein K L, Melechko A V, Tracy J B. ACS Appl Mater Interfaces, 2011, 3: 936
-
[26]
[26] Eastcott J I, Easton E B. Electrochim Acta, 2009, 54: 3460
-
[27]
[27] Anderson M L, Stroud R M, Rolison D R. Nano Lett, 2002, 2: 235
-
[28]
[28] Zhang L, Kim J, Dy E, Ban S, Tsay K C, Kawai H, Shi Z, Zhang J J. Electrochim Acta, 2013, 108: 480
-
[29]
[29] Sharma S, Pollet B G. J Power Sources, 2012, 208: 96
-
[30]
[30] Song S Q, Liang Y R, Li Z H, Wang Y, Fu R W, Wu D C, Tsiakaras P. Appl Catal B, 2010, 98: 132
-
[31]
[31] Schniepp H C, Li J L, McAllister M J, Sai H, Herrera-Alonso M, Adamson D H, Prud'homme R K, Car R, Saville D A, Aksay I A. J Phys Chem B, 2006, 110: 8535
-
[32]
[32] McAllister M J, Li J L, Adamson D H, Schniepp H C, Abdala A A, Liu J, Herrera-Alonso M, Milius D L, Car R, Prud'homme R K, Aksay I A. Chem Mater, 2007, 19: 4396
-
[33]
[33] Marinkas A, Arena F, Mitzel J, Prinz G M, Heinzel A, Peinecke V, Natter H. Carbon, 2013, 58: 139
-
[34]
[34] Cui C H, Gan L, Heggen M, Rudi S, Strasser P. Nat Mater, 2013, 12: 765
-
[35]
[35] Gasteiger H A, Kocha S S, Sompalli B, Wagner F T. Appl Catal B, 2005, 56: 9
-
[36]
[36] Mukerjee S, Srinivasan S. J Electroanal Chem, 1993, 357: 201
-
[37]
[37] Esmaeilifar A, Rowshanzamir S, Eikani M H, Ghazanfari E. Energy, 2010, 35: 3941
-
[38]
[38] Li W Z, Chen Z W, Xu L B, Yan Y S. J Power Sources, 2010, 195: 2534
-
[39]
[39] Calvillo L, Gangeri M, Perathoner S, Centi G, Moliner R, Lazaro M J. Int J Hydrogen Energy, 2011, 36: 9805
-
[40]
[40] Zhu H, Li X W, Wang F H. Int J Hydrogen Energy, 2011, 36: 9151
-
[41]
[41] Xu Z, Zhang H M, Liu S S, Zhang B S, Zhong H X, Su D S. Int J Hydrogen Energy, 2012, 37: 17978
-
[42]
[42] Moreira J, del Angel P, Ocampo A L, Sebastian P J, Montoya J A, Castellanos R H. Int J Hydrogen Energy, 2004, 29: 915
-
[43]
[43] Li B, Qiao J L, Zheng J S, Yang D J, Ma J X. Int J Hydrogen Energy, 2009, 34: 5144
-
[44]
[44] Zhang H J, Yuan X, X Sun L L, Yang J H, Ma Z F, Shao Z P. Electrochim Acta, 2012, 77: 324
-
[45]
[45] Henry C R. Prog Surf Sci, 2005, 80: 92
-
[46]
[46] Wilson G J, Matijasevich A S, Mitchell D R G, Schulz J C, Will G D. Langmuir, 2006, 22: 2016
-
[47]
[47] Reetz M T, Schulenburg H, Lopez M, Spliethoff B, Tesche B. Chimia, 2004, 58: 896
-
[48]
[48] Shen J F, Huang W S, Wu L P, Hu Y Z, Ye M X. Composites Part A, 2007, 38: 1331
-
[49]
[49] Sheng W. [PhD Dissertation]. Boston: MIT, 2010
-
[50]
[50] Bonnemann H, Nagabhushana K. J New Mater Electrochem Systems, 2004, 7(2): 93
-
[51]
[51] Hashim A A. The Delivery of Nanoparticles. Chapter 19. Croatia: InTech, 2012. 406
-
[52]
[52] Grolleau C, Coutanceau C, Pierre F, Leger J M. Electrochim Acta, 2008, 53: 7157
-
[53]
[53] Lin J F, Adame A, Kannan A M. J Electrochem Soc, 2010, 157: B846
-
[54]
[54] Bronstein L M. Top Curr Chem, 2003, 226: 55
-
[55]
[55] Liu B, Creager S. J Power Sources, 2010, 195: 1812
-
[56]
[56] Zhang Y, Erkey C. J Supercritical Fluids, 2006, 38: 252
-
[57]
[57] Lin J F, Mason C W, Adame A, Liu X, Peng X H, Kannan A M. Electrochim Acta, 2010, 55: 6496
-
[58]
[58] Harish S, Baranton S, Coutanceau C, Joseph J. J Power Sources, 2012, 214: 33
-
[59]
[59] Fievet F, Lagier J P, Blin B, Beaudoin B, Figlarz M. Solid State Ionics, 1989, 32-33: 198
-
[60]
[60] Liu Z L, Gan L M, Hong L, Chen W X, Lee J Y. J Power Sources, 2005, 139: 73
-
[61]
[61] Lebegue E, Baranton S, Coutanceau C. J Power Sources, 2011, 196: 920
-
[62]
[62] White R J, Luque R, Budarin V L, Clark J H, Macquarrie D J. Chem Soc Rev, 2009, 38: 481
-
[63]
[63] Saminathan K, Kamavaram V, Veedu V, Kannan A M. Int J Hydrogen Energy, 2009, 34: 3838
-
[64]
[64] Mehta V, Cooper J S. J Power Sources, 2003, 114: 32
-
[65]
[65] Jung D S, Park S B, Kang Y C. Korean J Chem Eng, 2010, 27: 1621
-
[66]
[66] Morse J D, Jankowski A F, Graff R T, Hayes J P. J Vacuum Sci Technol A, 2000, 18: 2003
-
[67]
[67] Girishkumar G, Rettker M, Underhile R, Binz D, Vinodgopal K, McGinn P, Kamat P. Langmuir, 2005, 21: 8487
-
[68]
[68] Wee J H, Lee K Y, Kim S H. J Power Sources, 2007, 165: 667
-
[69]
[69] Basu D, Basu S. Electrochim Acta, 2011, 56: 7758
-
[70]
[70] Tamasauskaite-Tamasiunaite L, Balciunaite A, Vaiciukeviciene A, Selskis A, Pakstas V. J Power Sources, 2012, 208: 242
-
[71]
[71] Ramesh K V, Shukla A K. J Power Sources, 1987, 19: 279
-
[72]
[72] Zhiani M, Gasteiger H A, Piana M, Catanorchi S. Int J Hydrogen Energy, 2011, 36: 5110
-
[73]
[73] Lai C L, Kolla P, Zhao Y, Fong H, Smirnova A L. Electrochim Acta, 2014, 130: 431
-
[74]
[74] Jasinski R J. Nature, 1964, 201: 1212
-
[75]
[75] Zagal J H. Coord Chem Rev, 1992, 119: 89
-
[76]
[76] Vasudevan P, Santosh, Mann N, Tyagi S. Transition Metal Chem, 1990, 15: 81
-
[77]
[77] Schilling T, Okunola A, Masa J, Schuhmann W, Bron M. Electrochim Acta, 2010, 55: 7597
-
[78]
[78] Tarasevich M R, Zhutaeva G V, Radina M V, Karichev Z R, Teishev E A, Miners J H, Goueres P, Sanchez-Corteron E. Russ J Electrochem, 2003, 39: 1094
-
[79]
[79] Baker R, Wilkinson D P, Zhang J J. Electrochim Acta, 2008, 53: 6906
-
[80]
[80] Zagal J, Paez M, Tanaka A A, Dos Santos Junior J R, Linkous C A. J Electroanal Chem, 1992, 339: 13
-
[81]
[81] Ramirez G, Trollund E, Isaacs M, Armijo F, Zagal J, Costamagna J, Aguirre M J. Electroanalysis, 2002, 14: 540
-
[82]
[82] Tse Y H, Janda P, Lam H, Zhang J J, Pietro W J, Lever A B P. J Porphyrins Phthalocyanines, 1997, 1 (1): 3
-
[83]
[83] Collman J P, Elliott C M, Halbert T R, Tovrog B S. Proc Nat Acad Sci USA, 1977, 74: 18
-
[84]
[84] Durand R R, Bencosme C S, Collman J P, Anson F C. J Am Chem Soc, 1983, 105: 2710
-
[85]
[85] Tanaka A A, Fierro C, Scherson D A, Yeager E. Mater Chem Phys, 1989, 22: 431
-
[86]
[86] Ding L, Dai X F, Lin R, Wang H J, Qiao J L. J Electrochem Soc, 2012, 159: F577
-
[87]
[87] Kruusenberg I, Mondal J, Matisen L, Sammelselg V, Tammeveski K. Electrochem Commun, 2013, 33: 18
-
[88]
[88] Zagal J H, Griveau S, Ozoemena K I, Nyokong T, Bedioui F. J Nanosci Nanotechnol, 2009, 9: 2201
-
[89]
[89] Morozan A, Campidelli S, Filoramo A, Jousselme B, Palacin S. Carbon, 2011, 49: 4839
-
[90]
[90] Kruusenberg I, Matisen L, Tammeveski K. J Nanosci Nanotechnol, 2013, 13: 621
-
[91]
[91] Okunola A, Kowalewska B, Bron M, Kulesza P J, Schuhmann W. Electrochim Acta, 2009, 54: 1954
-
[92]
[92] Yamazaki S, Yamada Y, Ioroi T, Fujiwara N, Siroma Z, Yasuda K, Miyazaki Y. J Electroanal Chem, 2005, 576: 253
-
[93]
[93] Mamuru S A, Ozoemena K I. Electroanalysis, 2010, 22: 985
-
[94]
[94] Lalande G, Cote R, Guay D, Dodelet J P, Weng L T, Bertrand P. Electrochim Acta, 1997, 42: 1379
-
[95]
[95] Jahnke H, Schonborn M., Zimmermann G. Top Curr Chem, 1976, 61: 133
-
[96]
[96] Ramavathu L N, Maniam K K, Gopalram K, Chetty R. J Appl Electrochem, 2012, 42: 945
-
[97]
[97] Kruusenberg I, Matisen L, Tammeveski K. Int J Electrochem Sci, 2013, 8 (1): 1057
-
[98]
[98] Kruusenberg I, Matisen L, Shah Q, Kannan A M, Tammeveski K. Int J Hydrogen Energy, 2012, 37: 4406
-
[99]
[99] Steigerwalt E S, Deluga G A, Cliffel D E, Lukehart C M. J Phys Chem B, 2001, 105: 8097
-
[100]
[100] Ohgai T. In: Peng X H ed. Nanowires - Recent Advances. Shanghai, China: InTech, 2012. 101
-
[101]
[101] Brunauer S, Emmett P H, Teller E. J Am Chem Soc, 1938, 60: 309
-
[102]
[102] Pozio A, Francesco M D, Cemmi A, Cardellini F, Giorgi L. J Power Sources, 2002, 105: 13
-
[103]
[103] Gao H L, Liao S J, Zeng J H, Xie Y C, Dang D. Electrochim Acta, 2011, 56: 2024
-
[104]
[104] Ohyagi S, Matsuda T, Iseki Y, Sasaki T, Kaito C. J Power Sources, 2011, 196: 3743
-
[105]
[105] Mench M, Kumbur E C, Veziroglu T N. Polymer Electrolyte Fuel Cell Degradation. Oxford: Elsevier, 2011. 472
-
[106]
[106] Bellows R J, MarucchiSoos E P, Buckley D T. Ind Eng Chem Res, 1996, 35: 1235
-
[107]
[107] Ohyagi S, Sasaki T. Electrochim Acta, 2013, 102: 336
-
[1]
-
-
-
[1]
Guoliang Gao , Guangzhen Zhao , Guang Zhu , Bowen Sun , Zixu Sun , Shunli Li , Ya-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557
-
[2]
Ping Liu , Fei Yu . Covalent organic framework ionomers for medium-temperature fuel cells. Chinese Journal of Structural Chemistry, 2025, 44(4): 100465-100465. doi: 10.1016/j.cjsc.2024.100465
-
[3]
Jiaqi Lin , Pupu Yang , Yimin Jiang , Shiqian Du , Dongcai Zhang , Gen Huang , Jinbo Wang , Jun Wang , Qie Liu , Miaoyu Li , Yujie Wu , Peng Long , Yangyang Zhou , Li Tao , Shuangyin Wang . Surface decoration prompting the decontamination of active sites in high-temperature proton exchange membrane fuel cells. Chinese Chemical Letters, 2024, 35(11): 109435-. doi: 10.1016/j.cclet.2023.109435
-
[4]
Wenxuan Yang , Long Shang , Xiaomeng Liu , Sihan Zhang , Haixia Li , Zhenhua Yan , Jun Chen . Ultrafast synthesis of nanocrystalline spinel oxides by Joule-heating method. Chinese Chemical Letters, 2024, 35(11): 109501-. doi: 10.1016/j.cclet.2024.109501
-
[5]
Ying Li , Long-Jie Wang , Yong-Kang Zhou , Jun Liang , Bin Xiao , Ji-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033
-
[6]
Yihong Li , Zhong Qiu , Lei Huang , Shenghui Shen , Ping Liu , Haomiao Zhang , Feng Cao , Xinping He , Jun Zhang , Yang Xia , Xinqi Liang , Chen Wang , Wangjun Wan , Yongqi Zhang , Minghua Chen , Wenkui Zhang , Hui Huang , Yongping Gan , Xinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510
-
[7]
Zhiqing Ge , Zuxiong Pan , Shuo Yan , Baoying Zhang , Xiangyu Shen , Mozhen Wang , Xuewu Ge . Novel high-temperature thermochromic polydiacetylene material and its application as thermal indicator. Chinese Chemical Letters, 2024, 35(11): 109850-. doi: 10.1016/j.cclet.2024.109850
-
[8]
Shaonan Liu , Shuixing Dai , Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277
-
[9]
Yaxin Sun , Huiyu Li , Shiquan Guo , Congju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418
-
[10]
Wenbiao Zhang , Bolong Yang , Zhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630
-
[11]
Wenyi Mei , Lijuan Xie , Xiaodong Zhang , Cunjian Shi , Fengzhi Wang , Qiqi Fu , Zhenjiang Zhao , Honglin Li , Yufang Xu , Zhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825
-
[12]
Meng Wang , Yan Zhang , Yunbo Yu , Wenpo Shan , Hong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928
-
[13]
Linjing Li , Wenlai Xu , Jianyong Ning , Yaping Zhong , Chuyue Zhang , Jiane Zuo , Zhicheng Pan . Revealing the intrinsic mechanisms for accelerating nitrogen removal efficiency in the Anammox reactor by adding Fe(II) at low temperature. Chinese Chemical Letters, 2024, 35(8): 109243-. doi: 10.1016/j.cclet.2023.109243
-
[14]
Yiwen Xu , Chaozheng He , Chenxu Zhao , Ling Fu . Single-atom Ti doping on S-vacancy two-dimensional CrS2 as a catalyst for ammonia synthesis: A DFT study. Chinese Chemical Letters, 2025, 36(4): 109797-. doi: 10.1016/j.cclet.2024.109797
-
[15]
Zhiwei Zhong , Yanbin Huang , Wantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339
-
[16]
Yifan LIU , Zhan ZHANG , Rongmei ZHU , Ziming QIU , Huan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008
-
[17]
Lijun Yan , Shiqi Chen , Penglu Wang , Xiangyu Liu , Lupeng Han , Tingting Yan , Yuejin Li , Dengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132
-
[18]
Yueying Yang , Huiru Xie , Xinbo Yu , Yang Liu , Hui Wang , Hua Li , Lixia Chen . Design, synthesis and evaluation of the first DYRK1A degrader for promoting the proliferation of pancreatic β-cells. Chinese Chemical Letters, 2024, 35(11): 109570-. doi: 10.1016/j.cclet.2024.109570
-
[19]
Erzhuo Cheng , Yunyi Li , Wei Yuan , Wei Gong , Yanjun Cai , Yuan Gu , Yong Jiang , Yu Chen , Jingxi Zhang , Guangquan Mo , Bin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386
-
[20]
Keyang Li , Yanan Wang , Yatao Xu , Guohua Shi , Sixian Wei , Xue Zhang , Baomei Zhang , Qiang Jia , Huanhua Xu , Liangmin Yu , Jun Wu , Zhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511
-
[1]
Metrics
- PDF Downloads(355)
- Abstract views(567)
- HTML views(25)