Citation: Pengjia Tan, Zhihua Gao, Chaofeng Shen, Yali Du, Xiaodong Li, Wei Huang. Ni-Mg-Al solid basic layered double oxide catalysts prepared using surfactant-assisted coprecipitation method for CO2 reforming of CH4[J]. Chinese Journal of Catalysis, ;2014, 35(12): 1955-1971. doi: 10.1016/S1872-2067(14)60171-6 shu

Ni-Mg-Al solid basic layered double oxide catalysts prepared using surfactant-assisted coprecipitation method for CO2 reforming of CH4

  • Corresponding author: Zhihua Gao,  Wei Huang, 
  • Received Date: 27 April 2014
    Available Online: 1 July 2014

    Fund Project: 国家高技术研究发展计划(863计划, 2013AA051201). (863计划, 2013AA051201)

  • Ni-Mg-Al solid basic catalysts for CO2 reforming of CH4 were prepared using a surfactant-assisted coprecipitation method. The preferred orientations of the surfactants on the Ni(111) and Ni(200) crystal planes were investigated. The catalytic performance of the surfactant-modified catalysts was tested at 800 ℃. The cetyltrimethylammonium bromide (CTAB)-modified catalyst (CB-LDO; LDO = layered double oxide) was further studied at various reaction temperatures. All the catalysts were characterized using Fourier-transform infrared spectroscopy, X-ray diffraction, temperature- programmed reduction, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and temperature-programmed oxidation. The results show that growth of the Ni(200) plane is promoted by tetrapropylammonium hydroxide and restrained by P123, PVP, and CTAB. The crystallinity degree of Ni(200) plays a key role in the activation of CH4. The CB-LDO catalysts retain high activities and stabilities, because of the crystal phase transformation at high temperature during the reaction; this leads to the formation of spinel NiAl2O4 and exposure of the Ni(200) crystal plane.
  • 加载中
    1. [1]

      [1] Naomohan, Fu X J, Lei Y Q, Zhang H J, Su H Q. Chin J Catal (瑙莫汗, 付晓娟, 雷艳秋, 苏海全. 催化学报), 2014, 34: 379

    2. [2]

      [2] Xu L L, Song H L, Chou L J. Appl Catal B, 2011, 108-109: 177

    3. [3]

      [3] Zhang X Q, Wang N, Xu Y, Yin Y X, Shang S Y. Catal Commun, 2014, 45: 11

    4. [4]

      [4] Shen C F. [MS Dissertation]. Tai yuan: Taiyuan Univ Technol (沈朝峰. [硕士研究生学位论文]. 太原: 太原理工大学), 2013

    5. [5]

      [5] Forano C, Hibino T, Leroux F, Taviot-Guého C. Developments in Clay Science, 2006, 1: 1021

    6. [6]

      [6] Ren S B, Wen H Z, Cao X Z, Wang Z C, Lei Z P, Pan C X, Kang S G, Shui H F. Chin J Catal (任世彪, 文宏志, 曹先中, 王知彩, 雷智平, 潘春秀, 康士刚, 水恒福. 催化学报), 2014, 35: 546

    7. [7]

      [7] Xiang G L, Wang X. Chin J Inorg Chem (相国磊, 王训. 无机化学学报), 2011, 27: 2323

    8. [8]

      [8] Li Y, Shen W J. Sci Chin Chem, 2012, 55: 2485

    9. [9]

      [9] Hu Q H, Li X C, Yang A J, Yang C Y. Chin J Catal (胡全红, 黎先财, 杨爱军, 杨春燕. 催化学报), 2012, 33: 563

    10. [10]

      [10] Rives V. Mater Chem Phys, 2002, 75: 19

    11. [11]

      [11] Gao P, Li F, Zhao N, Wang H, Wei W, Sun Y H. Acta Phys-Chim Sin (高鹏, 李枫, 赵宁, 王慧, 魏伟, 孙予罕. 物理化学学报), 2014, DOI: 10.3866/PKU.WHXB201401252

    12. [12]

      [12] Djebarri B, Gonzalez-Delacruz V M, Halliche D, Bachari K, Saadi A, Caballero A, Holgado J P, Cherifi O. Reac Kinet Mech Catal, 2014, 111: 259

    13. [13]

      [13] Zaghouane-Boudiaf H, Boutahala M, Arab L. Chem Eng J, 2012, 187: 142

    14. [14]

      [14] Li D L, Atake I, Shishido T, Oumi Y, Sano T, Takehira, K. J Catal, 2007, 250: 299

    15. [15]

      [15] Nam H S, Hwang N M, Yu B D,Yoon J K. Phys Rev Lett, 2002, 89: 275502

    16. [16]

      [16] Shen X J, Yang J P, Liu Y, Luo Y S, Fu S Y. New J Chem, 2011, 35: 1403

    17. [17]

      [17] Li P W, Wang N, Wang R M. Eur J Inorg Chem, 2010: 2261

    18. [18]

      [18] Li J D, Croiset E, Ricardez-Sandoval L. J Mol Catal A, 2012, 365: 103

    19. [19]

      [19] Wang S G, Cao D B, Li Y W, Wang J G, Jiao H J. Surf Sci, 2006, 600: 3226

    20. [20]

      [20] Wang Q S, Ren W, Yuan X L, Mu R M, Song, Z L,Wang X L. Int J Hydrogen Energy, 2012, 37: 11488

    21. [21]

      [21] Kumar P, Sun Y P, Idem R O. Energy Fuels, 2008, 22: 3575

    22. [22]

      [22] Xiao H P, Liu Z C, Zhou X G, Zhu K K. Catal Commun, 2013, 34: 11

    23. [23]

      [23] Bang Y J, Han S J, Yoo J K, Choi J H, Kang K H, Song J H, Seo J G, Jung J C, Song I K. Int J Hydrogen Energy, 2013, 38: 8751.

    24. [24]

      [24] Dieuzeide M L, Iannibelli V, Jobbagy M, Amadeo N. Int J Hydrogen Energy, 2012, 37: 14926.

    25. [25]

      [25] Du X J, Zhang D S, Shi L Y, Gao R H, Zhang J P. Nanoscale, 2013, 5: 2659.

    26. [26]

      [26] Mora M, Jiménez-Sanchidrián C, Ruiz J R. J Colloid Interf Sci, 2006, 302: 568

    27. [27]

      [27] Lucrédio A F, Jerkiewickz G, Assaf E M. Appl Catal A, 2007, 333: 90

    28. [28]

      [28] Wang Z T, Shao X, Larcher A, Xie K, Dong D H, Li C Z. Catal Today, 2013, 216: 44

    29. [29]

      [29] Kang K M, Kim H W, Shim I W, Kwak H Y. Fuel Process Technol, 2011, 92: 1236

    30. [30]

      [30] Ning F Y, Shao M F, Zhang C L, Xu S M, Wei M, Duan X. Nano Energy, 2014, 7: 134

    31. [31]

      [31] Hou J, Liu Z M, Lin G D,Zhang H B. Int J Hydrogen Energy, 2014, 39: 1315

    32. [32]

      [32] Liu D P, Wang Y F, Shi D M, Jia X L, Wang X, Borgna A, Lau R, Yang Y H. Int J Hydrogen Energy, 2012, 37: 10135

    33. [33]

      [33] Damyanova S, Pawelec B. Arishtirova K, Fierro J L G. Int J Hydrogen Energy, 2012, 37: 15966

    34. [34]

      [34] Salam M A, Sufian S, Murugesan T. Mater Chem Phys, 2013, 142: 213

    35. [35]

      [35] Alvar E N, Rezaei M. Scripta Mater, 2009, 61: 212

    36. [36]

      [36] Hadian N, Rezaei M, Mosayebi Z, Meshkani F. J Nat Gas Chem, 2012, 21: 200

    37. [37]

      [37] Zhai X L, Ding S, Liu Z H, Jin Y, Cheng Y. Int J Hydrogen Energy, 2011, 36: 482

    38. [38]

      [38] Bai Y, Long R, Wang C M, Xiong Y J. J Univ Sci Technol Chin (柏彧, 龙冉, 王成名, 熊宇杰. 中国科学技术大学学报), 2013, 43: 889

    39. [39]

      [39] Chen Y G, Ren J. Catal Lett, 1994, 29: 39.

    40. [40]

      [40] Liu C J, Ye J Y, Jiang J J, Pan Y X. ChemCatChem, 2011, 3: 529

    41. [41]

      [41] Zhu J Q, Peng X X, Yao L, Tong D M, Hu C W. Catal Sci Technol, 2012, 2: 529

    42. [42]

      [42] Wang N, Yu X P, Shen K, Chu W,Qian W Z. Int J Hydrogen Energy, 2013, 38: 9718

    43. [43]

      [43] Eltejaei H, Reza Bozorgzadeh H, Towfighi J, Reza Omidkhah M, Rezaei M, Zanganeh R, Zamaniyan A, Zarrin Ghalam A. Int J Hydrogen Energy, 2012, 37: 4107

    44. [44]

      [44] Koerts T, Van Santen R A. J Chem Soc, Chem Commun, 1991: 1281

    45. [45]

      [45] Shi C K, Zhang P. Appl Catal B, 2012, 115-116: 190

    46. [46]

      [46] Hao Z G, Zhu Q S, Jiang Z, Hou B L, Li H Z. Fuel Process Technol, 2009, 90: 113

    47. [47]

      [47] Zhang Z L, Verykios X E. Catal Today, 1994, 21: 589

    48. [48]

      [48] Zhang H, Li M, Xiao P, Liu D, Zou C J. Chem Eng Technol, 2013, 36:1701.

    49. [49]

      [49] Sun L Z, Tan Y S, Zhang Q D, Xie H J, Song F, Han Y Z. Int J Hydrogen Energy, 2013, 38: 1892

    50. [50]

      [50] Long J W, Laskoski M, Keller T M, Pettigrew K A, Zimmerman T N, Qadri S B, Peterson G W. Carbon, 2010, 48: 501

    51. [51]

      [51] Tang S, Ji L, Li J, Zeng H C, Tan K L, Li K. J Catal,2000, 194: 424

    52. [52]

      [52] Zhang J G, Wang H, Dalai Ajay K. Appl Catal A, 2008, 339: 121

    53. [53]

      [53] Kroll V C H, Swaan, H M, Mirodatos C. J Catal, 1996, 161: 409

  • 加载中
    1. [1]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    4. [4]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    5. [5]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    6. [6]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    7. [7]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    8. [8]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    9. [9]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    10. [10]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    11. [11]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    12. [12]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    13. [13]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    14. [14]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    15. [15]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    16. [16]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    17. [17]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    18. [18]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    19. [19]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(0)
  • Abstract views(296)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return