Citation: Shufang Zhang, Chengxia Miao, Daqian Xu, Wei Sun, Chungu Xia. CuI/N4 ligand/TEMPO derivatives: A mild and highly efficient system for aerobic oxidation of primary alcohols[J]. Chinese Journal of Catalysis, ;2014, 35(11): 1864-1873. doi: 10.1016/S1872-2067(14)60161-3 shu

CuI/N4 ligand/TEMPO derivatives: A mild and highly efficient system for aerobic oxidation of primary alcohols

  • Corresponding author: Chengxia Miao,  Wei Sun, 
  • Received Date: 1 May 2014
    Available Online: 3 June 2014

    Fund Project: 国家自然科学基金(21103207,21133011). (21103207,21133011)

  • A new system consisting of a copper(I) complex generated in situ from a tetradentate nitrogen ligand and CuI in combination with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) derivatives was successfully developed. The system was suitable for efficient and selective aerobic oxidation of primary benzyl and allyl alcohols with a wide range of functional groups to the corresponding aldehydes at room temperature. The best result was obtained with N,N'-dimethyl-N,N'-bis(2- pyridylmethyl)ethane-1,2-diamine as the ligand and 4-OH-TEMPO as a cocatalyst in CH3CN. In addition, high-resolution mass spectrometry, ultraviolet-visible spectroscopy, and electrochemical experiments were used to provide evidence of intermediates.
  • 加载中
    1. [1]

      [1] de Montellano P R O. Cytochrome P450: Structure, Mechanism, and Biochemistry. 2nd Ed. New York: Plenum Press, 1995

    2. [2]

      [2] Turlington C R, White P S, Brookhat M, Templeton J L. J Am Chem Soc, 2014, 136: 3981

    3. [3]

      [3] Jacobsen E N. In: Abel E W, Stone F G A, Wilkinson G Eds. Comprehensive Organometallic Chemistry Ⅱ. Oxford (UK): Pergamon, 1995

    4. [4]

      [4] McDonald A R, Que L Jr. Coord Chem Rev, 2013, 257: 414

    5. [5]

      [5] White M C, Doyle A G, Jacobsen E N. J Am Chem Soc, 2001, 123: 7194

    6. [6]

      [6] Prat I, Font D, Company A, Junge K, Ribas X, Beller M, Costas M. Adv Syn Catal, 2013, 355: 947

    7. [7]

      [7] Chen M S, White M C. Science, 2007, 318: 783

    8. [8]

      [8] Wu M, Wang B, Wang S F, Xia C G, Sun W. Org Lett, 2009, 11: 3622

    9. [9]

      [9] Wang B, Miao C X, Wang S F, Xia C G, Sun W. Chem Eur J, 2012, 18: 6750

    10. [10]

      [10] Wang B, Wang S F, Xia C G, Sun W. Chem Eur J, 2012, 18: 7332

    11. [11]

      [11] Sheldon R A, Arends I W C E, ten Brink G J, Dijksman A. Acc Chem Res, 2002, 35: 774

    12. [12]

      [12] Zhang H, Fu L L, Zhong H M. Chin J Catal (张华, 付罗岭, 钟红敏. 催化学报), 2013, 34: 1848

    13. [13]

      [13] Wang L Y, Li J, Lv Y, Zhao G D, Gao S. Appl Organomet Chem, 2012, 26: 37

    14. [14]

      [14] Fritz-Langhals E. Org Process Res Dev, 2005, 9: 577

    15. [15]

      [15] Mu R Z, Liu Z Q, Yang Z J, Liu Z G, Wu L M, Liu Z L. Adv Synth Catal, 2005, 347: 1333

    16. [16]

      [16] Yu Y L, Gao B J, Li Y F. Chin J Catal (余依玲, 高保娇, 李艳飞. 催化学报), 2013, 34: 1776

    17. [17]

      [17] Vogler T, Studer A. Synthesis, 2008: 1979

    18. [18]

      [18] Sasano Y, Nagasawa S, Yamazaki M, Shibuya M, Park J, Iwabuchi Y. Angew Chem Int Ed, 2014, 53: 3236

    19. [19]

      [19] Semmelhack M F, Schmid C R, Cortes D A, Chou C S. J Am Chem Soc, 1984, 106: 3374

    20. [20]

      [20] Markό I E, Giles P R, Tsukazaki M, Chellé-Regnaut I, Gautier A, Brown S M, Urch C J. J Org Chem, 1999, 64: 2433

    21. [21]

      [21] Hoover J M, Stahl S S. J Am Chem Soc, 2011, 133: 16901

    22. [22]

      [22] Greene J F, Hoover J M, Mannel D S, Root T W, Stahl S S. Org Process Res Dev, 2013, 17: 1247

    23. [23]

      [23] Steves J E, Stahl S S. J Am Chem Soc, 2013, 135: 15742

    24. [24]

      [24] Hoover J M, Ryland B L, Stahl S S. ACS Catal, 2013, 3: 2599

    25. [25]

      [25] Hoover J M, Ryland B L, Stahl S S. J Am Chem Soc, 2013, 135: 2357

    26. [26]

      [26] Mannam S, Alamsetti S K, Sekar G. Adv Synth Catal, 2007, 349: 2253

    27. [27]

      [27] Jiang N, Ragauskas A J. ChemSusChem, 2008, 1: 823

    28. [28]

      [28] Lu Z L, Costa J S, Roubeau O, Mutikainen I, Turpeinen U, Teat S J, Gamez P, Reedijk J. Dalton Trans, 2008: 3567

    29. [29]

      [29] Velusamy S, Punniyamurthy T. Eur J Org Chem, 2003: 3913

    30. [30]

      [30] Contel M, Izuel C, Laguna M, Villuendas P R, Alonso P J, Fish R H. Chem Eur J, 2003, 9: 4168

    31. [31]

      [31] Miao C X, Wang J Q, Yu B, Cheng W G, Sun J, Chanfreau S, He L N, Zhang S J. Chem Commun, 2011, 47: 2697

    32. [32]

      [32] Miao C X, He L N, Wang J L, Wu F. J Org Chem, 2010, 75: 257

    33. [33]

      [33] Miao C X, He L N, Wang J Q, Gao J. Synlett, 2009: 3291

    34. [34]

      [34] Miao C X, He L N, Wang J Q, Wang J L. Adv Synth Catal, 2009, 351: 2209

    35. [35]

      [35] Karmakar T K, Aromi G, Ghosh B K, Usman A, Fun H K, Mallah T, Behrens U, Solans X, Chandra S K. J Mater Chem, 2006, 16: 278

    36. [36]

      [36] Yu S J, Miao C X, Wang D Q, Wang S F, Xia C G, Sun W. J Mol Catal A, 2012, 353-354: 185

    37. [37]

      [37] Semmelhack M F, Chou C S, Cortés D A. J Am Chem Soc, 1983, 105: 4492

    38. [38]

      [38] Wang X L, Liu R H, Jin Y, Liang X M. Chem Eur J, 2008, 14: 2679

    39. [39]

      [39] Liu R H, Liang X M, Dong C Y, Hu X Q. J Am Chem Soc, 2004, 126: 4112

    40. [40]

      [40] Cole R B. Electrospray Ionization Mass Spectrometry: Fundamentals, Instrumentation, and Applications. New York: Wiley, 1997

  • 加载中
    1. [1]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    2. [2]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    3. [3]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    4. [4]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    6. [6]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    7. [7]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    8. [8]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    9. [9]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    10. [10]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    11. [11]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    12. [12]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    13. [13]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    14. [14]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    15. [15]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    16. [16]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    17. [17]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    18. [18]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    19. [19]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    20. [20]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

Metrics
  • PDF Downloads(0)
  • Abstract views(320)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return