Citation: Zhaoyan Zhang, Ying Wang, Xian Li, Wei-Lin Dai. Synergistic effect on Au-Pd bimetallic catalyst during oxidation of benzyl alcohol to sodium benzoate[J]. Chinese Journal of Catalysis, ;2014, 35(11): 1846-1857. doi: 10.1016/S1872-2067(14)60159-5 shu

Synergistic effect on Au-Pd bimetallic catalyst during oxidation of benzyl alcohol to sodium benzoate

  • Corresponding author: Wei-Lin Dai, 
  • Received Date: 6 May 2014
    Available Online: 26 May 2014

    Fund Project: 国家重点基础研究发展计划(973计划,2012CB224804) (973计划,2012CB224804) 国家自然科学基金(21373054,21173052) (21373054,21173052) 上海市科学技术委员会上海市自然科学基金(08DZ2270500). (08DZ2270500)

  • A series of AuPd/CeO2 bimetallic catalysts with different Au/Pd molar ratios were investigated and their catalytic performance in the oxidation of benzyl alcohol to sodium benzoate and benzoic acid under solvent-free conditions was studied. The supported catalysts were characterized by X-ray diffraction, UV-Vis diffuse reflectance spectroscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The Au-Pd nanoparticles were successfully deposited onto CeO2 as a homogeneous alloy. The activity of the bimetallic catalysts was superior to that of the corresponding monometallic catalysts. This improvement was attributed to the synergistic effect between Au and Pd. The catalyst with an Au/Pd molar ratio of 3/1 showed the best catalytic performance (the yield of benzoic acid reached 92%), and it could be easily recovered and reused for more than seven successive reactions without significant loss of activity.
  • 加载中
    1. [1]

      [1] Moskovits M, Srnova-Sloufova I, Vlckova B. J Chem Phys, 2002, 116: 10435

    2. [2]

      [2] Kim M J, Na H J, Lee K C, Yoo E A, Lee M Y. J Mater Chem, 2003, 13: 1789

    3. [3]

      [3] Xu J, White T, Li P, He C H, Yu J G, Yuan W K, Han Y F. J Am Chem Soc, 2010, 132: 10398

    4. [4]

      [4] Zhang G J, Wang Y E, Wang X, Chen Y, Zhou Y M, Tang Y W, Lu L D, Bao J C, Lu T H. Appl Catal B, 2011, 102: 614

    5. [5]

      [5] Pina C D, Falletta E, Prati L, Rossi M. Chem Soc Rev, 2008, 37: 2077

    6. [6]

      [6] Ishida T, Kinoshita N, Okatsu H, Akita T, Takei T, Haruta M. Angew Chem Int Ed, 2008, 47: 9265

    7. [7]

      [7] Parreira L A, Bogdanchikova N, Pestryakov A, Zepeda T A, Tuzovskaya I, Farias M H, Gusevskaya E V. Appl Catal A, 2011, 397: 145

    8. [8]

      [8] Menegazzo F, Signoretto M, Manzoli M, Boccuzzi F, Cruciani G, Pinna F, Strukul G. J Catal, 2009, 268: 122

    9. [9]

      [9] Cui X J, Shi F, Deng Y Q. Chem Commun, 2012, 48: 7586

    10. [10]

      [10] Xiang Y Z, Meng Q Q, Li X N, Wang J G. Chem Commun, 2010, 46: 5918

    11. [11]

      [11] Wang X G, Venkataramanan N S, Kawanami H, Ikushima Y. Green Chem, 2007, 9: 1352

    12. [12]

      [12] Kesavan L, Tiruvalam R, Ab Rahim M H, bin Saiman M I, Enache D I, Jenkins R L, Dimitratos N, Lopez-Sanchez J A, Taylor S H, Knight D W, Kiely C J, Hutchings G J. Science, 2011, 331: 195

    13. [13]

      [13] Liu H L, Li Y W, Jiang H F, Vargas C, Luque R. Chem Commun, 2012, 48: 8431

    14. [14]

      [14] Enache D I, Edwards J K, Landon P, Solsona-Espriu B, Carley A F, Herzing A A, Watanabe M, Kiely C J, Knight D W, Hutchings G J. Science, 2006, 311: 362

    15. [15]

      [15] Shi Y, Yang H M, Zhao X G, Cao T, Chen J Z, Zhu W W, Yu Y Y, Hou Z S. Catal Commun, 2012, 18: 142

    16. [16]

      [16] Miedziak P J, Tang Z R, Davies T E, Enache D I, Bartley J K, Carley A F, Herzing A A, Kiely C J, Taylor S H, Hutchings G J. J Mater Chem, 2009, 19: 8619

    17. [17]

      [17] Lee Y W, Kim M, Kim Y, Kang S W, Lee J H, Han S W. J Phys Chem C, 2010, 114: 7689

    18. [18]

      [18] Gu X J, Lu Z H, Jiang H L, Akita T, Xu Q. J Am Chem Soc, 2011, 133: 11822

    19. [19]

      [19] Chen M S, Kumar D, Yi C W, Goodman D W. Science, 2005, 310: 291

    20. [20]

      [20] Cardenas-Lizana F, Gomez-Quero S, Hugon A, Delannoy L, Louis C, Keane M A. J Catal, 2009, 262: 235

    21. [21]

      [21] Ma C Y, Dou B J, Li J J, Cheng J, Hu Q, Hao Z P, Qiao S Z. Appl Catal B, 2009, 92: 202

    22. [22]

      [22] Zhan G W, Hong Y L, Mbah V T, Huang J L, Ibrahim A R, Du M M, Li Q B. Appl Catal A, 2012, 439-440: 179

    23. [23]

      [23] Tamura M, Tonomura T, Shimizu K, Satsuma A. Green Chem, 2012, 14: 717

    24. [24]

      [24] Tamura M, Tonomura T, Shimizu K, Satsuma A. Green Chem, 2012, 14: 984

    25. [25]

      [25] Honda M, Sonehara S, Yasuda H, Nakagawa Y, Tomishige K. Green Chem, 2011, 13: 3406

    26. [26]

      [26] Tamura M, Tonomura T, Shimizu K, Satsuma A. Appl Catal A, 2012, 417-418: 6

    27. [27]

      [27] Krishna K, Seijger G B F, van den Bleek C M, Calis H P A. Chem Commun, 2002: 2030

    28. [28]

      [28] Min B K, Friend C M. Chem Rev, 2007, 107: 2709

    29. [29]

      [29] Schubert M M, Hackenberg S, van Veen A C, Muhler M, Plzak V, Behm R J. J Catal, 2001, 197: 113

    30. [30]

      [30] Carrettin S, Concepcion P, Corma A, Lopez Nieto J M, Puntes V F. Angew Chem Int Ed, 2004, 43: 2538

    31. [31]

      [31] Corma A, Domine M E. Chem Commun, 2005: 4042

    32. [32]

      [32] Tada M, Bal R, Mu X D, Coquet R, Namba S, Iwasawa Y. Chem Commun, 2007: 4689

    33. [33]

      [33] Miura H, Wada K, Hosokawa S, Sai M, Kondo T, Inoue M. Chem Commun, 2009: 4112

    34. [34]

      [34] Sato T, Komanoya T. Catal Commun, 2009, 10: 1095

    35. [35]

      [35] Concepcion P, Corma A, Silvestre-Albero J, Franco V, Chane-Ching J Y. J Am Chem Soc, 2004, 126: 5523

    36. [36]

      [36] Matsumura Y, Shen W J, Ichihashi Y, Okumura M. Chem Lett, 1999: 1101

    37. [37]

      [37] Wang Y, Zheng J M, Fan K N, Dai W L. Green Chem, 2011, 13: 1644

    38. [38]

      [38] Li X, Zheng J M, Yang X L, Dai W L, Fan K N. Chin J Catal (李娴, 郑嘉旻, 杨新丽, 戴维林, 范康年. 催化学报), 2013, 34: 1013

    39. [39]

      [39] Cui Y Y, Wang Y, Fan K N, Dai W L. Appl Surf Sci, 2013, 279: 391

    40. [40]

      [40] Nowicka E, Hofmann J P, Parker S F, Sankar M, Lari G M, Kondrat S A, Knight D W, Bethell D, Weckhuysen B M, Hutchings G J. Phys Chem Chem Phys, 2013, 15: 12147

    41. [41]

      [41] Tauster S J, Fung S C, Garten R L. J Am Chem Soc, 1978, 100: 170

    42. [42]

      [42] Jana D, Dandapat A, De G. J Phys Chem C, 2009, 113: 9101

    43. [43]

      [43] Link S, Wang Z L, El-Sayed M A. J Phys Chem B, 1999, 103: 3529

    44. [44]

      [44] Toshima N, Harada M, Yamazaki Y, Asakura K. J Phys Chem, 1992, 96: 9927

    45. [45]

      [45] Creighton J A, Eadon D G. J Chem Soc, Faraday Trans, 1991, 87: 3881

    46. [46]

      [46] Scott R W J, Wilson O M, Oh S K, Kenik E A, Crooks R M. J Am Chem Soc, 2004, 126: 15583

    47. [47]

      [47] Ferrer D, Torres-Castro A, Gao X, Sepulveda-Guzman S, Ortiz-Mendez U, Jose-Yacaman M. Nano Lett, 2007, 7: 1701

    48. [48]

      [48] Berlowitz P J, Peden C H F, Goodman D W. J Phys Chem, 1988, 92: 5213

    49. [49]

      [49] Yi C W, Luo K, Wei T, Goodman D W. J Phys Chem B, 2005, 109: 18535

    50. [50]

      [50] Han Y F, Zhong Z Y, Ramesh K, Chen F X, Chen L W, White T, Tay Q, Yaakub S N, Wang Z. J Phys Chem C, 2007, 111: 8410

    51. [51]

      [51] Chou T S, Periman M L, Watson R E. Phys Rev B, 1976, 14: 3248

    52. [52]

      [52] Nascente P A P, de Castro S G C, Landers R, Kleiman G G. Phys Rev B, 1991, 43: 4659

    53. [53]

      [53] Deki S, Akamatsu K, Hatakenaka Y, Mizuhata M, Kajinami A. Nanostruct Mater, 1999, 11: 59

    54. [54]

      [54] Jose-Yacaman M, Mejia-Rosales S, Perez-Tijerina E, Blom D A, Allard L F. Microsc Microanal, 2006, 12: 772

    55. [55]

      [55] Wang A Q, Liu X Y, Mou C Y, Zhang T. J Catal, 2013, 308: 258

    56. [56]

      [56] Wang R Y, Wu Z W, Chen C M, Qin Z F, Zhu H Q, Wang G F, Wang H, Wu C M, Dong W W, Fan W B, Wang J G. Chem Commun, 2013, 49: 8250

    57. [57]

      [57] Wen C, Yin A Y, Cui Y Y, Yang X L, Dai W L, Fan K N. Appl Catal A, 2013, 458: 82

    58. [58]

      [58] Li H, Li H X, Dai W L, Wang W J, Fang Z G, Deng J F. Appl Surf Sci, 1999, 152: 25

    59. [59]

      [59] Liu J H, Wang A Q, Chi Y S, Lin H P, Mou C Y. J Phys Chem B, 2005, 109: 40

  • 加载中
    1. [1]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    2. [2]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    5. [5]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    6. [6]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    7. [7]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    11. [11]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    12. [12]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    13. [13]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    14. [14]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    15. [15]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    16. [16]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    17. [17]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    20. [20]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

Metrics
  • PDF Downloads(0)
  • Abstract views(352)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return