Citation: Junying Zhang, Xiaofeng Yang, Baolin Hou, Aiqin Wang, Zhenlei Li, Hua Wang, Tao Zhang. Comparison of cellobiose and glucose transformation to ethylene glycol[J]. Chinese Journal of Catalysis, ;2014, 35(11): 1811-1817. doi: 10.1016/S1872-2067(14)60151-0 shu

Comparison of cellobiose and glucose transformation to ethylene glycol

  • Corresponding author: Aiqin Wang,  Tao Zhang, 
  • Received Date: 29 April 2014
    Available Online: 10 May 2014

    Fund Project: 国家自然科学基金(21176235,21373206,21206159). (21176235,21373206,21206159)

  • Cellobiose was used as a model feedstock to probe the reaction pathways of cellulose to ethylene glycol (EG). Its reactivity was compared with that of glucose using a catalyst composed of H2WO4 and Ru/C. EG can be produced by both the direct retro-aldol condensation of cellobiose and the retro-aldol condensation of glucose derived from cellobiose hydrolysis. The direct retro-aldol condensation of cellobiose further promoted the hydrolysis of cellobiose. Cellobiose has a lower reactivity for retro-aldol condensation than glucose, which decreased the formation rate of glycolaldehyde and made it more matched with the subsequent hydrogenation rate, thus leading to increased yield of EG from cellobiose.
  • 加载中
    1. [1]

      [1] Alonso D M, Bond J Q, Dumesic J A. Green Chem, 2010, 12: 1493

    2. [2]

      [2] Huber G W, Iborra S, Corma A. Chem Rev, 2006, 106: 4044

    3. [3]

      [3] Corma A, Iborra S, Velty A. Chem Rev, 2007, 107: 2411

    4. [4]

      [4] Dhepe P L, Fukuoka A. ChemSusChem, 2008, 1: 969

    5. [5]

      [5] Yu Y, Lou X, Wu H W. Energy Fuels, 2008, 22: 46

    6. [6]

      [6] Stöcker M. Angew Chem Int Ed, 2008, 47: 9200

    7. [7]

      [7] Rinaldi R, Schüth F. Energy Environ Sci, 2009, 2: 610

    8. [8]

      [8] Zhou C H, Xia X, Lin C X, Tong D S, Beltramini J. Chem Soc Rev, 2011, 40: 5588

    9. [9]

      [9] Kobayashi H, Komanoya T, Guha S K, Hara K, Fukuoka A. Appl Catal A, 2011, 409-410: 13

    10. [10]

      [10] Gallezot P. Chem Soc Rev, 2012, 41: 1538

    11. [11]

      [11] Wang Y L, Deng W P, Wang B J, Zhang Q H, Wan X Y, Tang Z C, Wang Y, Zhu C, Cao Z X, Wang G C, Wan H L. Nat Commun, 2013, 4: 2141

    12. [12]

      [12] Ma J P, Yu W Q, Wang M, Jia X Q, Lu F, Xu J. Chin J Catal (马继平, 于维强, 王敏, 贾秀全, 路芳, 徐杰. 催化学报), 2013, 34: 492

    13. [13]

      [13] Zhao C, Kou Y, Lemonidou A A, Li X B, Lercher J A. Angew Chem Int Ed, 2009, 48: 3987

    14. [14]

      [14] Alonso D M, Bond J Q, Dumesic J A. Green Chem, 2010, 12: 1493

    15. [15]

      [15] Peng B X, Yuan X G, Zhao C, Lercher J A. J Am Chem Soc, 2012, 134: 9400

    16. [16]

      [16] Li G Y, Li N, Li S S, Wang A Q, Cong Y, Wang X D, Zhang T. Chem Commun, 2013, 49: 5727

    17. [17]

      [17] Yang J F, Li N, Li G Y, Wang W T, Wang A Q, Wang X D, Cong Y, Zhang T. ChemSusChem, 2013, 6: 1149

    18. [18]

      [18] Wang S, Liu H C. Chin J Catal (王帅, 刘海超. 催化学报), 2014, 35: 631

    19. [19]

      [19] Zhang X C, Wang M, Wang Y H, Zhang C F, Zhang Z, Wang F, Xu J. Chin J Catal (张晓辰, 王敏, 王业红, 张超峰, 张哲, 王峰, 徐杰. 催化学报), 2014, 35: 703

    20. [20]

      [20] Dong X L, Xue S, Zhang J L, Huang W, Zhou J N, Chen Z A, Yuan D H, Xu Y P, Liu Z M. Chin J Catal (董兴隆, 薛松, 张今令, 黄为, 周建男, 陈兆安, 袁丹华, 徐云鹏, 刘中民. 催化学报), 2014, 35: 684

    21. [21]

      [21] Xiao Z H, Jin S H, Pang M, Liang C H. Green Chem, 2013, 15: 891

    22. [22]

      [22] Komanoya T, Kobayashi H, Hara K, Chun W J, Fukuoka A. ChemCatChem, 2014, 6: 230

    23. [23]

      [23] Ji N, Zhang T, Zheng M Y, Wang A Q, Wang H, Wang X D, Chen J G. Angew Chem Int Ed, 2008, 47: 8510

    24. [24]

      [24] Zhang Y H, Wang A Q, Zhang T. Chem Commun, 2010, 46: 862

    25. [25]

      [25] Zheng M Y, Wang A Q, Ji N, Pang J F, Wang X D, Zhan T. ChemSusChem, 2010, 3: 63

    26. [26]

      [26] Zhao G H, Zheng M Y, Wang A Q, Zhang T. Chin J Catal (赵冠鸿, 郑明远, 王爱琴, 张涛. 催化学报), 2010, 31: 928

    27. [27]

      [27] Pang J F, Zheng M Y, Wang A Q, Zhang T. Ind Eng Chem Res, 2011, 50: 6601

    28. [28]

      [28] Li C Z, Zheng M Y, Wang A Q, Zhang T. Energy Environ Sci, 2012, 5: 6383

    29. [29]

      [29] Ji N, Zheng M Y, Wang A Q, Zhang T, Chen J G. ChemSusChem, 2012, 5: 939

    30. [30]

      [30] Tai Z J, Zhang J Y, Wang A Q, Zheng M Y, Zhang T. Chem Commun, 2012, 48: 7052

    31. [31]

      [31] Tai Z J, Zhang J Y, Wang A Q, Pang J F, Zheng M Y, Zhang T. ChemSusChem, 2013, 6: 652

    32. [32]

      [32] Wang A Q, Zhang T. Acc Chem Res, 2013, 46: 1377

    33. [33]

      [33] Zhou L K, Pang J F, Wang A Q, Zhang T. Chin J Catal (周立坤, 庞纪峰, 王爱琴, 张涛. 催化学报), 2013, 34: 2041

    34. [34]

      [34] Zhao G H, Zheng M Y, Zhang J Y, Wang A Q, Zhang T. Ind Eng Chem Res, 2013, 52: 9566

    35. [35]

      [35] Zheng M Y, Pang J F, Wang A Q, Zhang T. Chin J Catal (郑明远, 庞纪峰, 王爱琴, 张涛. 催化学报), 2014, 35: 602

    36. [36]

      [36] Liu Y, Luo C, Liu H C. Angew Chem Int Ed, 2012, 51: 3249

    37. [37]

      [37] Huang Y B, Fu Y. Green Chem, 2013, 15: 1095

    38. [38]

      [38] Song J L, Fan H L, Ma J, Han B X. Green Chem, 2013, 15: 2619

    39. [39]

      [39] Kabyemela B M, Takigawa M, Adschiri T, Malaluan R M, Arai K. Ind Eng Chem Res, 1998, 37: 357

    40. [40]

      [40] Sasaki M, Furukawa M, Minami K, Adschiri T, Arai K. Ind Eng Chem Res, 2002, 41: 6642

    41. [41]

      [41] Yan N, Zhao C, Luo C, Dyson P J, Liu H C, Kou Y. J Am Chem Soc, 2006, 128: 8714

    42. [42]

      [42] Deng W P, Liu M, Tan X S, Zhang Q H, Wang Y. J Catal, 2010, 271: 22

    43. [43]

      [43] Delley B. J Chem Phys, 1990, 92: 508

    44. [44]

      [44] Delley B. J Chem Phys, 2000, 113: 7756

    45. [45]

      [45] Zhang J Y, Hou B L, Wang A Q, Li Z L, Wang H, Zhang T. AIChE J, 2014, DOI: 10.1002/aic.14554

    46. [46]

      [46] Zhang J Y, Hou B L, Wang A Q, Li Z L, Wang H, Zhang T. AIChE J, in Press

  • 加载中
    1. [1]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    2. [2]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    3. [3]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    4. [4]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    5. [5]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    6. [6]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    7. [7]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    8. [8]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    9. [9]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    10. [10]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    11. [11]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    12. [12]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    13. [13]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    14. [14]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    15. [15]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    16. [16]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    17. [17]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    18. [18]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    19. [19]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    20. [20]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

Metrics
  • PDF Downloads(0)
  • Abstract views(376)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return