Citation:
Junying Zhang, Xiaofeng Yang, Baolin Hou, Aiqin Wang, Zhenlei Li, Hua Wang, Tao Zhang. Comparison of cellobiose and glucose transformation to ethylene glycol[J]. Chinese Journal of Catalysis,
;2014, 35(11): 1811-1817.
doi:
10.1016/S1872-2067(14)60151-0
-
Cellobiose was used as a model feedstock to probe the reaction pathways of cellulose to ethylene glycol (EG). Its reactivity was compared with that of glucose using a catalyst composed of H2WO4 and Ru/C. EG can be produced by both the direct retro-aldol condensation of cellobiose and the retro-aldol condensation of glucose derived from cellobiose hydrolysis. The direct retro-aldol condensation of cellobiose further promoted the hydrolysis of cellobiose. Cellobiose has a lower reactivity for retro-aldol condensation than glucose, which decreased the formation rate of glycolaldehyde and made it more matched with the subsequent hydrogenation rate, thus leading to increased yield of EG from cellobiose.
-
Keywords:
- Cellobiose,
- Reaction mechanism,
- Glucose,
- Ethylene glycol
-
-
-
[1]
[1] Alonso D M, Bond J Q, Dumesic J A. Green Chem, 2010, 12: 1493
-
[2]
[2] Huber G W, Iborra S, Corma A. Chem Rev, 2006, 106: 4044
-
[3]
[3] Corma A, Iborra S, Velty A. Chem Rev, 2007, 107: 2411
-
[4]
[4] Dhepe P L, Fukuoka A. ChemSusChem, 2008, 1: 969
-
[5]
[5] Yu Y, Lou X, Wu H W. Energy Fuels, 2008, 22: 46
-
[6]
[6] Stöcker M. Angew Chem Int Ed, 2008, 47: 9200
-
[7]
[7] Rinaldi R, Schüth F. Energy Environ Sci, 2009, 2: 610
-
[8]
[8] Zhou C H, Xia X, Lin C X, Tong D S, Beltramini J. Chem Soc Rev, 2011, 40: 5588
-
[9]
[9] Kobayashi H, Komanoya T, Guha S K, Hara K, Fukuoka A. Appl Catal A, 2011, 409-410: 13
-
[10]
[10] Gallezot P. Chem Soc Rev, 2012, 41: 1538
-
[11]
[11] Wang Y L, Deng W P, Wang B J, Zhang Q H, Wan X Y, Tang Z C, Wang Y, Zhu C, Cao Z X, Wang G C, Wan H L. Nat Commun, 2013, 4: 2141
-
[12]
[12] Ma J P, Yu W Q, Wang M, Jia X Q, Lu F, Xu J. Chin J Catal (马继平, 于维强, 王敏, 贾秀全, 路芳, 徐杰. 催化学报), 2013, 34: 492
-
[13]
[13] Zhao C, Kou Y, Lemonidou A A, Li X B, Lercher J A. Angew Chem Int Ed, 2009, 48: 3987
-
[14]
[14] Alonso D M, Bond J Q, Dumesic J A. Green Chem, 2010, 12: 1493
-
[15]
[15] Peng B X, Yuan X G, Zhao C, Lercher J A. J Am Chem Soc, 2012, 134: 9400
-
[16]
[16] Li G Y, Li N, Li S S, Wang A Q, Cong Y, Wang X D, Zhang T. Chem Commun, 2013, 49: 5727
-
[17]
[17] Yang J F, Li N, Li G Y, Wang W T, Wang A Q, Wang X D, Cong Y, Zhang T. ChemSusChem, 2013, 6: 1149
-
[18]
[18] Wang S, Liu H C. Chin J Catal (王帅, 刘海超. 催化学报), 2014, 35: 631
-
[19]
[19] Zhang X C, Wang M, Wang Y H, Zhang C F, Zhang Z, Wang F, Xu J. Chin J Catal (张晓辰, 王敏, 王业红, 张超峰, 张哲, 王峰, 徐杰. 催化学报), 2014, 35: 703
-
[20]
[20] Dong X L, Xue S, Zhang J L, Huang W, Zhou J N, Chen Z A, Yuan D H, Xu Y P, Liu Z M. Chin J Catal (董兴隆, 薛松, 张今令, 黄为, 周建男, 陈兆安, 袁丹华, 徐云鹏, 刘中民. 催化学报), 2014, 35: 684
-
[21]
[21] Xiao Z H, Jin S H, Pang M, Liang C H. Green Chem, 2013, 15: 891
-
[22]
[22] Komanoya T, Kobayashi H, Hara K, Chun W J, Fukuoka A. ChemCatChem, 2014, 6: 230
-
[23]
[23] Ji N, Zhang T, Zheng M Y, Wang A Q, Wang H, Wang X D, Chen J G. Angew Chem Int Ed, 2008, 47: 8510
-
[24]
[24] Zhang Y H, Wang A Q, Zhang T. Chem Commun, 2010, 46: 862
-
[25]
[25] Zheng M Y, Wang A Q, Ji N, Pang J F, Wang X D, Zhan T. ChemSusChem, 2010, 3: 63
-
[26]
[26] Zhao G H, Zheng M Y, Wang A Q, Zhang T. Chin J Catal (赵冠鸿, 郑明远, 王爱琴, 张涛. 催化学报), 2010, 31: 928
-
[27]
[27] Pang J F, Zheng M Y, Wang A Q, Zhang T. Ind Eng Chem Res, 2011, 50: 6601
-
[28]
[28] Li C Z, Zheng M Y, Wang A Q, Zhang T. Energy Environ Sci, 2012, 5: 6383
-
[29]
[29] Ji N, Zheng M Y, Wang A Q, Zhang T, Chen J G. ChemSusChem, 2012, 5: 939
-
[30]
[30] Tai Z J, Zhang J Y, Wang A Q, Zheng M Y, Zhang T. Chem Commun, 2012, 48: 7052
-
[31]
[31] Tai Z J, Zhang J Y, Wang A Q, Pang J F, Zheng M Y, Zhang T. ChemSusChem, 2013, 6: 652
-
[32]
[32] Wang A Q, Zhang T. Acc Chem Res, 2013, 46: 1377
-
[33]
[33] Zhou L K, Pang J F, Wang A Q, Zhang T. Chin J Catal (周立坤, 庞纪峰, 王爱琴, 张涛. 催化学报), 2013, 34: 2041
-
[34]
[34] Zhao G H, Zheng M Y, Zhang J Y, Wang A Q, Zhang T. Ind Eng Chem Res, 2013, 52: 9566
-
[35]
[35] Zheng M Y, Pang J F, Wang A Q, Zhang T. Chin J Catal (郑明远, 庞纪峰, 王爱琴, 张涛. 催化学报), 2014, 35: 602
-
[36]
[36] Liu Y, Luo C, Liu H C. Angew Chem Int Ed, 2012, 51: 3249
-
[37]
[37] Huang Y B, Fu Y. Green Chem, 2013, 15: 1095
-
[38]
[38] Song J L, Fan H L, Ma J, Han B X. Green Chem, 2013, 15: 2619
-
[39]
[39] Kabyemela B M, Takigawa M, Adschiri T, Malaluan R M, Arai K. Ind Eng Chem Res, 1998, 37: 357
-
[40]
[40] Sasaki M, Furukawa M, Minami K, Adschiri T, Arai K. Ind Eng Chem Res, 2002, 41: 6642
-
[41]
[41] Yan N, Zhao C, Luo C, Dyson P J, Liu H C, Kou Y. J Am Chem Soc, 2006, 128: 8714
-
[42]
[42] Deng W P, Liu M, Tan X S, Zhang Q H, Wang Y. J Catal, 2010, 271: 22
-
[43]
[43] Delley B. J Chem Phys, 1990, 92: 508
-
[44]
[44] Delley B. J Chem Phys, 2000, 113: 7756
-
[45]
[45] Zhang J Y, Hou B L, Wang A Q, Li Z L, Wang H, Zhang T. AIChE J, 2014, DOI: 10.1002/aic.14554
-
[46]
[46] Zhang J Y, Hou B L, Wang A Q, Li Z L, Wang H, Zhang T. AIChE J, in Press
-
[1]
-
-
-
[1]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[2]
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
-
[3]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[4]
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
-
[5]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[6]
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
-
[7]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[8]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[9]
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
-
[10]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
-
[11]
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
-
[12]
Xinhao Yan , Guoliang Hu , Ruixi Chen , Hongyu Liu , Qizhi Yao , Jiao Li , Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073
-
[13]
Yiling Wu , Peiyao Jin , Shenyue Tian , Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034
-
[14]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[15]
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
-
[16]
Yuhang Jiang , Weijie Liu , Jiaqi Cai , Jiayue Chen , Yanping Ren , Pingping Wu , Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054
-
[17]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[18]
Chengqian Mao , Yanghan Chen , Haotong Bai , Junru Huang , Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014
-
[19]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[20]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(376)
- HTML views(39)