Citation: Pei Tang, Yongjun Gao, Jinghe Yang, Wenjing Li, Huabo Zhao, Ding Ma. Growth mechanism of N-doped graphene materials and their catalytic behavior in the selective oxidation of ethylbenzene[J]. Chinese Journal of Catalysis, ;2014, 35(6): 922-928. doi: 10.1016/S1872-2067(14)60150-9 shu

Growth mechanism of N-doped graphene materials and their catalytic behavior in the selective oxidation of ethylbenzene

  • Corresponding author: Ding Ma, 
  • Received Date: 15 May 2014
    Available Online: 21 May 2014

    Fund Project: 国家自然科学基金(21176221,21273224);国家重点基础研究发展计划(973计划,2011CB201402,2013CB933100). (21176221,21273224);国家重点基础研究发展计划(973计划,2011CB201402,2013CB933100)

  • N-doped graphene materials were prepared from both inorganic and organic nitrogen sources and pyrolytic graphene oxide as the carbon substrate. Transmission electron microscopy, scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy were used to investigate the detailed growth mechanism of the N species in these N-doped graphene materials. The different chemical nature and binding energy of the different N species resulted in their different trends with annealing temperature. These N-doped graphene are excellent catalysts in the oxidation of ethylbenzene. A high yield of acetonphenone did not depend on the total nitrogen amount but only on the type of nitrogen species. Too much defects and N-dopants were detrimental to this reaction. A proper activation of the oxidant is needed to get good catalytic activity.
  • 加载中
    1. [1]

      [1] Rodriguez-Reinoso F. Carbon,1998, 36: 159

    2. [2]

      [2] Serp P, Corrias M, Kalck P. Appl Catal A,2003, 253: 337

    3. [3]

      [3] Huang C C, Li C, Shi G Q. Energy Environ Sci,2012, 5: 8848

    4. [4]

      [4] Machado B F, Serp P. Catal Sci Technol,2012, 2: 54

    5. [5]

      [5] Su C L, Loh K P. Acc Chem Res,2013, 46: 2275

    6. [6]

      [6] Su D S, Perathoner S, Centi G. Chem Rev,2013, 113: 5782

    7. [7]

      [7] Dreyer D R, Bielawski C W. Chem Sci,2011, 2: 1233

    8. [8]

      [8] Su D S, Zhang J, Frank B, Thomas A, Wang X C, Paraknowitsch J, Schlögl R. ChemSusChem,2010, 3: 169

    9. [9]

      [9] Mestl G, Maksimova N I, Keller N, Roddatis V V, Schlögl R. Angew Chem Int Ed,2001, 40: 2066

    10. [10]

      [10] Liu X, Frank B, Zhang W, Cooter P T, Schlögl R, Su D S. Angew Chem Int Ed, 2011, 50: 3318

    11. [11]

      [11] Yu H, Peng F, Tan J, Hu X W, Wang H J, Yang J, Zheng W X. Angew Chem Int Ed,2011, 50: 3978

    12. [12]

      [12] Long J L, Xie X Q, Xu J, Gu Q, Chen L M, Wang X X. Acs Catal,2012, 2: 622

    13. [13]

      [13] Gao Y J, Ma D, Wang C L, Guan J, Bao X H. Chem Commun,2011, 47: 2432

    14. [14]

      [14] Liu C, Tang P, Chen A B, Hu Y Q, Yu Y F, Lü H J, Ma D. Mater Lett,2013, 108: 285

    15. [15]

      [15] Gao Y J, Hu G, Zhong J, Shi Z J, Zhu Y S, Su D S, Wang J G, Bao X H, Ma D. Angew Chem Int Ed,2013, 52: 2109

    16. [16]

      [16] Yang J H, Sun G, Gao Y J, Zhao H B, Tang P, Tan J, Lu A H, Ma D. Energy Environ Sci,2013, 6: 793

    17. [17]

      [17] Zhang J, Liu X, Blume R, Zhang A H, Schlogl R, Su D S. Science,2008, 322: 73

    18. [18]

      [18] Kong X K, Sun Z Y, Chen M, Chen C L, Chen Q W. Energy Environ Sci,2013, 6: 3260

    19. [19]

      [19] Sheng Z H, Gao H L, Bao W J, Wang F B, Xia X H. J Mater Chem,2012, 22: 390

    20. [20]

      [20] Kong X K, Chen C L, Chen Q W. Chem Soc Rev,2014, 43: 2841

    21. [21]

      [21] Larsen J W, Freund M, Kim K Y, Sidovar M, Stuart J L. Carbon,2000, 38: 655

    22. [22]

      [22] Yang J H, Sun G, Gao Y J, Zhao H B, Tang P, Tan J, Lu A H, Ma D. Energy Environ Sci,2013, 6: 793

    23. [23]

      [23] Martins Ferreira E H, Moutinho M V O, Stavale F, Lucchese M M, Capaz R B, Achete C A, Jorio A. Phys Rev B,2010, 82: 125429/1

    24. [24]

      [24] Li X L, Wang H L, Robinson J T, Sanchez H, Diankov G, Dai H J. J Am Chem Soc,2009, 131: 15939

    25. [25]

      [25] Zhao H B, Zhu Q J, Gao Y J, Zhai P, Ma D. Appl Catal A,2013, 456: 233

    26. [26]

      [26] Lai L F, Potts J R, Zhan D, Wang L, Poh C K, Tang C H, Gong H, Shen Z X, Jianyi L Y, Ruoff R S. Energy Environ Sci,2012, 5: 7936

    27. [27]

      [27] Zhang L S, Liang X Q, Song W G, Wu Z Y. Phys Chem Chem Phys,2010, 12: 12055

  • 加载中
    1. [1]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    6. [6]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    7. [7]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    8. [8]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    9. [9]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    10. [10]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    11. [11]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    12. [12]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    13. [13]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    14. [14]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    15. [15]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    16. [16]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    17. [17]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    18. [18]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

    19. [19]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    20. [20]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

Metrics
  • PDF Downloads(210)
  • Abstract views(643)
  • HTML views(54)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return