Citation: V. V. Strelko, S. S. Stavitskaya, Yu. I. Gorlov. Proton catalysis with active carbons and partially pyrolyzed carbonaceous materials[J]. Chinese Journal of Catalysis, ;2014, 35(6): 815-823. doi: 10.1016/S1872-2067(14)60147-9 shu

Proton catalysis with active carbons and partially pyrolyzed carbonaceous materials

  • Corresponding author: V. V. Strelko, 
  • Received Date: 15 May 2014
    Available Online: 19 May 2014

  • The development of environmentally friendly solid acid catalysts is a priority task. Highly oxidized activated carbon and their ion-substituted (saline) forms are effective proton transfer catalysts in esterification, hydrolysis, and dehydration, and thus are promising candidates as solid acid catalysts. Computations by the ab initio method indicated the cause for the enchanced acidity of the carboxylic groups attached to the surface of highly oxidized carbon. The synthesis of phosphorilated carbon was considered, and the proton transfer reactions catalyzed by them in recent studies were analyzed. The development of an amorphous carbon acid catalyst comprising polycyclic carbonaceous (graphene) sheets with-SO3H,-COOH and phenolic type OH-groups was carried out. These new catalysts were synthesized by partial pyrolysis and subsequent sulfonation of carbohydrates, polymers, and other organic compounds. Their high catalytic activities in proton transfere reactions including the processing of bio-based raw materials was demonsrated.
  • 加载中
    1. [1]

      [1] Rideal E K, Wright W M. J Chem Soc, 1926, 129:1813

    2. [2]

      [2] Garten V A, Weiss D E. Rev Pure Appl Chem, 1957, 7: 69

    3. [3]

      [3] Bansal R C, Donnet J B, Stoekly F. Active Carbon. New York: Marcel Dekker, 1988. 482

    4. [4]

      [4] Radowic L R, Rodriguez-Reinoso F. In: Thrower P A ed. Chemistry and Physics of Carbon. Vol 25. New York: Marcel Dekker, 1997. 243

    5. [5]

      [5] Serp P, Figueiredo J L ed. Carbon Materials for Catalysis. New Jersey: John Wiley & Sons. Inc, 2009. 579

    6. [6]

      [6] Nikolaev V G, Strelko V V. Hemoadsorption on Active Carbon. Kiev: Naukova Dumka, 1979. 288

    7. [7]

      [7] Puziy A M, Poddubnaya O I, Gawdzik B, Sobiesiak M, Tsyba M M. Adsorp Sci Technol, 2007, 25: 531

    8. [8]

      [8] Puziy A M, Poddubnaya O I, Socha R P, Gurgul J, Wisniewski M. Carbon, 2008, 46: 2113

    9. [9]

      [9] Puziy A M, Poddubnaya O I, Kochcin Yu N, Vlasenko N V, Tsyba M M. Carbon, 2010, 48: 706

    10. [10]

      [10] Villa A, Schiavoni M, Fulvio P F, Mahurin S M, Dai S, Mayes R T, Veith G M, Prati L. J Energy Chem, 2013, 22: 305

    11. [11]

      [11] Hara M, Yoshida T, Takagaki A, Takata T, Kondo J N, Hayashi S, Domen K. Angew Chem Int Ed, 2004, 43: 2955

    12. [12]

      [12] Toda M, Takagaki A, Okamura M, Kondo J N, Hayashi S, Domen K, Hara M. Nature, 2005, 438: 178

    13. [13]

      [13] Nakajima K, Hara M. ACS Catal, 2012, 2: 1296

    14. [14]

      [14] Khayoon M S, Hameed B H. Bioresour Technol, 2011, 102: 9229

    15. [15]

      [15] Emrani J, Shahbazi A. J Biotechnol Biomater, 2012, 2: 124

    16. [16]

      [16] Clark J H, Budarin V, Dugmore T, Luque R, Macquarrie D J, Strelko V. Catal Commun, 2008, 9: 1709

    17. [17]

      [17] Budarin V, Clark J H, Hardy J J E, Luque R, Milkowski K, Taveren S J, Wilson A J. Angew Chem Int Ed, 2006, 45: 3782

    18. [18]

      [18] Tarkovskaya I A. Oxidized Carbon. Kiev: Naukova dumka, 1981. 298

    19. [19]

      [19] Strazhesko D N, Skripnik Z D, Chervyacova L L. Reports Acad Sci USSR, 1964, 155(1): 168

    20. [20]

      [20] Strazhesko D N, Tovbina Z M, Stavitskaya S S. Ukrain Chim J, 1974, 40: 354

    21. [21]

      [21] Tarkovskaya I A, Stavitskaya S S, Strelko V V. Ukrain Chim J, 1983, 49: 16

    22. [22]

      [22] Stavitskaya S S, Davydov V I, Strelko V V. Proc Europ Carbon Conferenc “Carbon-96”. New Casle, UK, 1996, 2: 699

    23. [23]

      [23] Budinova T, Razvigorova M, Petrov N, Minkova R, Taranjiska R. Carbon, 1998, 36: 899

    24. [24]

      [24] Grunewald G C, Drago R S. J Am Chem Soc, 1991, 113: 1636

    25. [25]

      [25] Szymanski G S, Rychlicki G, Terzyk A P. Carbon, 1994, 32: 265

    26. [26]

      [26] Carrasco-Marin F, Mueden A, Moreno-Castilla C. J Phys Chem B, 1998, 102: 9239

    27. [27]

      [27] Zawadzki J, Wisniewski M, Weber J, Heintz O, Azambre B. Carbon, 2001, 39: 187

    28. [28]

      [28] Clark J H. Acc Chem Res, 2002, 35: 791

    29. [29]

      [29] Strelko V V, Stavitskaya S S, Strelko V V Jr, Streat M. Theor Experim Chem, 1998, 34(1): 27

    30. [30]

      [30] Gregor H P, Hamilton M J, Becher J, Bernstein F. J Phys Chem, 1955, 59: 874

    31. [31]

      [31] Contescu A, Contescu C, Putyera K, Schwarz J A. Carbon, 1997, 35: 83

    32. [32]

      [32] Lahaye J, Nanse G, Bagreev A, Sterlko V. Carbon, 1999, 37: 585

    33. [33]

      [33] Strelko V V. J Energy Chem, 2013, 22: 174

    34. [34]

      [34] Strelko V V ed. Selective Sorption and Catalysis on Active Carbon and Inorganic Ion Exangers (Russ). Kiev: Naukova dumka, 2008. 304

    35. [35]

      [35] Dunning T H Jr. J Chem Phys, 1989, 90: 1007

    36. [36]

      [36] Stavitskaya S S, Davydov V I, Korvyakov S G. Ukrain Chem J, 1992, 58: 165

    37. [37]

      [37] Korvyakov S G, Stavitskaya S S, Davydov V I. Ukrain Chem J, 1993, 59: 926

    38. [38]

      [38] Ryabov S I, Shostka G D, Lukichev B G, Strelko V V, Spiridonov V N, Kartel N T, Scherbitsky A B. Intern Urology Nephrology, 1984, 16: 345

    39. [39]

      [39] Strelko V V, Korovin Yu F, Kartel N T, Shcherbitskii A B. Russ J Appl Chem, 1984, 57: 1225

    40. [40]

      [40] Fedorishin A S, Strelko V V, Stavitskaya S S, Yakovlev V I, Tsyba N N, Mil'grandt V G. Russ J Appl Chem, 2010, 83: 281

    41. [41]

      [41] Onda A, Ochi T, Yanagisava K. Top Catal, 2009, 52: 801

    42. [42]

      [42] Qi X H, Guo H X, Li L Y, Smith R L Jr. ChemSucChem, 2012, 5: 2215

    43. [43]

      [43] Wand L, Zang J, Zhu L F, Meng X J, Xiao F S. J Energ Chem, 2013, 22: 241

    44. [44]

      [44] Onda A, Ochi T, Yanagisawa K. Creen Chem, 2008, 10: 1033

    45. [45]

      [45] Koutinas A A, Wang R, Webb C. Biotechnol Bioeng, 2004, 85: 524

    46. [46]

      [46] Lee D. Molecules, 2013, 18: 8168

    47. [47]

      [47] Suganuma S, Nakajima K, Kinato M, Yamaguchi D, Kato H, Hayashi S, Hara M. J Am Chem Soc, 2008, 130: 12787

    48. [48]

      [48] Wang J J, Xu W J, Ren J W, Lin X H, Lu G Z, Wang Y Q. Green Chem, 2011, 13: 2678

    49. [49]

      [49] Tanabe K, Hölderich W F. Appl Catal A, 1999, 181: 399

  • 加载中
    1. [1]

      Jumei ZhangZiheng ZhangGang LiHongjin QiaoHua XieLing Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278

    2. [2]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    3. [3]

      Yiqiao ChenAo LiuBiwen YangZhenzhen LiBinggang YeZhouyi GuoZhiming LiuHaolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295

    4. [4]

      Zhanheng YanWeiqing SuWeiwei XuQianhui MaoLisha XueHuanxin LiWuhua LiuXiu LiQiuhui Zhang . Carbon-based quantum dots/nanodots materials for potassium ion storage. Chinese Chemical Letters, 2025, 36(4): 110217-. doi: 10.1016/j.cclet.2024.110217

    5. [5]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    6. [6]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277

    7. [7]

      Yu YaoJinqiang ZhangYantao WangKunsheng HuYangyang YangZhongshuai ZhuShuang ZhongHuayang ZhangShaobin WangXiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633

    8. [8]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    9. [9]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    10. [10]

      Peide ZhuYangjia LiuYaoyao TangSiqi ZhuXinyang LiuLei YinQuan LiuZhiqiang YuQuan XuDixian LuoJuncheng Wang . Bi-doped carbon quantum dots functionalized liposomes with fluorescence visualization imaging for tumor diagnosis and treatment. Chinese Chemical Letters, 2024, 35(4): 108689-. doi: 10.1016/j.cclet.2023.108689

    11. [11]

      Fengkai ZouBorui SuHan LengNini XinShichao JiangDan WeiMei YangYouhua WangHongsong Fan . Red-emissive carbon quantum dots minimize phototoxicity for rapid and long-term lipid droplet monitoring. Chinese Chemical Letters, 2024, 35(10): 109523-. doi: 10.1016/j.cclet.2024.109523

    12. [12]

      Liwen WangBoyang WangSiyu LuShubo LvXiaoli Qu . High quantum yield yellow emission carbon dots for the construction of blue light blocking films. Chinese Chemical Letters, 2025, 36(2): 110497-. doi: 10.1016/j.cclet.2024.110497

    13. [13]

      Xinghong CaiQiang YangYao TongLanyin LiuWutang ZhangSam ZhangMin Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586

    14. [14]

      Yufeng WuMingjun JingJuan LiWenhui DengMingguang YiZhanpeng ChenMeixia YangJinyang WuXinkai XuYanson BaiXiaoqing ZouTianjing WuXianyou Wang . Collaborative integration of Fe-Nx active center into defective sulfur/selenium-doped carbon for efficient oxygen electrocatalysts in liquid and flexible Zn-air batteries. Chinese Chemical Letters, 2024, 35(9): 109269-. doi: 10.1016/j.cclet.2023.109269

    15. [15]

      Quan ZhangShunjie XingJingqian HanLi FengJianchun LiZhaosheng QianJin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117

    16. [16]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    17. [17]

      Wen-Jing LiJun-Bo WangYu-Heng LiuMo ZhangZhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001

    18. [18]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    19. [19]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    20. [20]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

Metrics
  • PDF Downloads(190)
  • Abstract views(479)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return