Citation: Shujin Zhu, Suyao Liu, Huaike Zhang, Enjing Lü, Jie Ren. Investigation of synthesis and hydroisomerization performance of SAPO-11/Beta composite molecular sieve[J]. Chinese Journal of Catalysis, ;2014, 35(10): 1676-1686. doi: 10.1016/S1872-2067(14)60133-9 shu

Investigation of synthesis and hydroisomerization performance of SAPO-11/Beta composite molecular sieve

  • Corresponding author: Jie Ren, 
  • Received Date: 7 March 2014
    Available Online: 10 April 2014

  • The SAPO-11/Beta composite molecular sieve was synthesized by the hydrothermal method with zeolite Beta as the silicon source. The physicochemical properties of SAPO-11, Beta molecular sieve, the composite molecular sieve, and the mechanical mixture of SAPO-11 and Beta molecular sieve were characterized by X-ray diffraction, N2 adsorption-desorption, scanning electron microscopy, transmission electron microscopy-energy dispersive spectroscopy, magic-angle spinning nuclear magnetic resonance, and pyridine adsorption infrared spectroscopy. In addition, the catalytic performance of platinum-loaded zeolite samples in the hydroisomerization of n-dodecane was investigated. The results indicate that the properties and catalytic performance of the composite molecular sieve were quite different from those of the pure zeolites and the mechanical mixture. Compared with the mechanical mixture, the combination of SAPO-11 and Beta by chemical bonds was more tightly bound in the composite molecular sieve with a core-shell structure. The acidity and pore structure of the composite were favorable for catalytic performance in the hydroisomerization of n-dodecane. The composite catalyst was superior to the other catalysts, especially in the yield of multibranched isomers.
  • 加载中
    1. [1]

      [1] Chao K J, Wu H C, Leu L J. Appl Catal A, 1996, 143: 223

    2. [2]

      [2] Eswaramoorthi I, Geetha Bhavani A, Lingappan N. Appl Catal A, 2003, 253: 469

    3. [3]

      [3] Nghiem V T, Sapaly G, Mériaudeau P, Naccache C. Top Catal, 2001, 14: 131

    4. [4]

      [4] Elangovan S P, Hartmann M. J Catal, 2003, 217: 388

    5. [5]

      [5] Liu P, Yao Y, Wang J. Reac Kinet Mech Catal, 2010, 101: 465

    6. [6]

      [6] Zhang A H, Nakamura I, Aimoto K, Fujimoto K. Ind Eng Chem Res, 1995, 34: 1074

    7. [7]

      [7] Kingeretal G, Majdal D, Vinek H. Appl Catal A, 2002, 225: 301

    8. [8]

      [8] Kusakari T, Tomishige K, Fujimoto K. Appl Catal A, 2002, 224: 219

    9. [9]

      [9] Miller S J. US Patent 5 149 421. 1992

    10. [10]

      [10] Parton R, Uytterhoeven L, Martens J A, Jacobs P A, Froment G F. Appl Catal A, 1991, 76: 131

    11. [11]

      [11] Sun X, Huang W G, Kang X H. Petrol Process Petrochem (孙霞, 黄卫国, 康小洪. 石油炼制与化工), 2010, 41(6): 1

    12. [12]

      [12] Fan Y, Lei D, Shi G, Bao X J. Catal Today, 2006, 114: 388

    13. [13]

      [13] Wang B, Zhang X W, Ma B, Zhang Z. Contemporary Chem Ind (王博, 张喜文, 马波, 张志智. 当代化工), 2009, 38: 412

    14. [14]

      [14] Roldán R, Romero F J, Jiménez-Sanchidrián C,Marinas J M, Gómez J P. Appl Catal A, 2005, 288: 104

    15. [15]

      [15] Chao K J, Lin C C, Lin C H, Wu H C, Tseng C W, Chen S H. Appl Catal A, 2000, 203: 211

    16. [16]

      [16] Zhang S Z, Chen S L, Dong P, Ji Z Y, Zhao J Y, Xu K Q. Chin J Catal (张胜振, 陈胜利, 董鹏, 纪智勇, 赵俊颖, 徐克琪. 催化学报), 2007, 28: 857

    17. [17]

      [17] Liu P, Ren J, Sun Y H. Chin J Catal (刘平, 任杰, 孙予罕. 催化学报), 2008, 29: 379

    18. [18]

      [18] Guo L, Fan Y, Bao X J, Shi G, Liu H Y. J Catal, 2013, 301: 162

    19. [19]

      [19] Hu Y F, Wang X S, Guo X W, Li S L, Hu S, Sun H B, Bai L. Catal Lett, 2005, 100: 59

    20. [20]

      [20] Meriaudeau P, Tuan V A, Nghiem V T, Lai S Y, Hung L N, Naccache C. J Catal, 1997, 169: 55

    21. [21]

      [21] Huang W G, Li D D, Shi Y H, Kang X H, Meng X B, Wang K, Dong W Z, Nie H, Li C. Chin J Catal (黄卫国, 李大东, 石亚华, 康小洪, 孟宪波, 王奎, 董维正, 聂红, 李灿. 催化学报), 2003, 24: 651

    22. [22]

      [22] Wang X X, Guo Sh Q, Zhao L F, Bull Korean Chem Soc, 2013, 34: 3829

    23. [23]

      [23] Zhang X, Wang J W, Zhong J, Liu A S, Gao J K. Microporous Mesoporous Mater, 2008, 108: 13

    24. [24]

      [24] Lok B M, Messina C A, Patton R L, Gajek R T, Cannan T R, Flanigen E M. US Patent 4 440 871. 1984

    25. [25]

      [25] Liu P, Ren J, Sun Y H. Acta Petrol Sin (Petrol Process Sect) (刘平, 任杰, 孙予罕. 石油学报(石油加工)), 2008, 24: 388

    26. [26]

      [26] Gregg S J, Sing K S W. Adsorption, Surface Area and Porosity. 2nd Ed. London: Academic Press, 1982. 154

    27. [27]

      [27] Li Y P, Pan R L, Huo Q, Zhang W, Dou T, Xie K C. Chin J Inorg Chem (李玉平, 潘瑞丽, 霍全, 张伟, 窦涛, 谢克昌. 无机化学学报), 2005, 21: 1455

    28. [28]

      [28] Li J, Tan Y S, Zhang Q D, Han Y Z. Fuel, 2010, 89: 3510

    29. [29]

      [29] Meriaudeau P, Tuan V A, Lefebvre F, Nghiem V T, Naccache C. Microporous Mesoporsous Mater, 1998, 22: 435

    30. [30]

      [30] Huang X D, Wang L J, Kong L D, Li Q Z. Appl Catal A, 2003, 253: 461

    31. [31]

      [31] Zhang H Y, Xie B, Meng X J, Müller U, Yilmaz B, Feyen M, Maurer S, Gies H, Tatsumi T, Bao X H, Zhang W P, De Vos D, Xiao F S. Microporous Mesoporous Mater, 2013, 180: 123

    32. [32]

      [32] Mintova S, Valtchev V, Onfroy T, Marichal C, Knzinger H, Bein T. Microporous Mesoporous Mater, 2006, 90: 237

    33. [33]

      [33] Li B, Tian P, Qi Y, Zhang L, Xu S T, Su X, Fan D, Liu Z M. Chin J Catal (李冰, 田鹏, 齐越, 张琳, 徐舒涛, 苏雄, 樊栋, 刘中民. 催化学报), 2013, 34: 593

    34. [34]

      [34] Zhang Z, Zong B N. Chin J Catal (张哲, 宗保宁. 催化学报), 2003, 24: 856

    35. [35]

      [35] Huang Y N, Richer R, Kirby C W. J Phys Chem B, 2003. 107:1326

    36. [36]

      [36] Hchtl M, Jentys A, Vinek H. Catal Today, 2001, 65: 171

    37. [37]

      [37] Hchtl M, Jentys A, Vinek H. J Catal, 2000, 190: 419

    38. [38]

      [38] Deng P, Nie C, Li Q Z. J Fudan Univ (Natur Sci Ed) (邓鹏, 聂聪, 李全芝. 复旦学报(自然科学版)), 2001, 40: 387

    39. [39]

      [39] Claude M C, Martens J A. J Catal, 2000, 190: 39

  • 加载中
    1. [1]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    2. [2]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    3. [3]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    4. [4]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    5. [5]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    6. [6]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    7. [7]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    8. [8]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    9. [9]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    10. [10]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    11. [11]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    12. [12]

      Xiaolei Jiang Fangdong Hu . Exploring the Mirror World in Organic Chemistry: the Teaching Design of “Enantiomers” from the Perspective of Curriculum and Ideological Education. University Chemistry, 2024, 39(10): 174-181. doi: 10.3866/PKU.DXHX202402052

    13. [13]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    14. [14]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    15. [15]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    16. [16]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    17. [17]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    18. [18]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    19. [19]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    20. [20]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

Metrics
  • PDF Downloads(0)
  • Abstract views(395)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return