Citation: Jiaying Cai, Hong Ma, Junjie Zhang, Zhongtian Du, Yizheng Huang, Jin Gao, Jie Xu. Catalytic oxidation of glycerol to tartronic acid over Au/HY catalyst under mild conditions[J]. Chinese Journal of Catalysis, ;2014, 35(10): 1653-1660. doi: 10.1016/S1872-2067(14)60132-7 shu

Catalytic oxidation of glycerol to tartronic acid over Au/HY catalyst under mild conditions

  • Corresponding author: Jie Xu, 
  • Received Date: 30 March 2014
    Available Online: 28 April 2014

    Fund Project:

  • Gold nanoclusters or nanoparticles on various supports (CeO2, activated carbon, HY, REY, and NaY) were investigated for glycerol oxidation in the aqueous phase under mild conditions. Compared with other catalysts, Au/HY showed remarkable catalytic performance in forming dicarboxylic acid (tartronic acid) over the monocarboxylic acid (glyceric acid) or the C-C cleavage product (oxalic acid). Au/HY achieved 98% conversion of glycerol and 80% yield of tartronic acid at 60 ℃ under 0.3 MPa O2. Further characterization showed that the small size of Au clusters is the key factor for the high oxidation performance. In situ Fourier transform infrared spectroscopy revealed that glycerol was first transformed to glyceric acid, and then glyceric acid was directly oxidized to tartronic acid.
  • 加载中
    1. [1]

      [1] Ragauskas A J, Williams C K, Davison B H, Britovsek G, Cairney J, Eckert C A, Frederick W J Jr, Hallett J P, Leak D J, Liotta C L, Mielenz J R, Murphy R, Templer R, Tschaplinski T. Science, 2006, 311: 484

    2. [2]

      [2] Bozell J J. Clean Soil Air Water, 2008, 36: 633

    3. [3]

      [3] Bozell J J, Petersen G R. Green Chem, 2010, 12: 539

    4. [4]

      [4] Kohse-Hinghaus K, Osswald P, Cool T A, Kasper T, Hansen N, Qi F, Westbrook C K, Westmoreland P R. Angew Chem Int Ed, 2010, 49: 3572

    5. [5]

      [5] Huber G W, Iborra S, Corma A. Chem Rev, 2006, 106: 4044

    6. [6]

      [6] Clark I T. Ind Eng Chem, 1958, 50: 1125

    7. [7]

      [7] Rennard D C, Kruger J S, Michael B C, Schmidt L D. Ind Eng Chem Res, 2010, 49: 8424

    8. [8]

      [8] Zhang M Y, Liang D, Nie R F, Lü X Y, Chen P, Hou Z Y. Chin J Catal (张梦媛, 梁丹, 聂仁峰, 吕秀阳, 陈平, 侯昭胤. 催化学报), 2012, 33: 1340

    9. [9]

      [9] Zhao J, Yu W Q, Li D C, Ma H, Gao J, Xu J. Chin J Catal (赵静, 于维强, 李德财, 马红, 高进, 徐杰. 催化学报), 2010, 31: 200

    10. [10]

      [10] Berchmans H J, Hirata S. Bioresour Technol, 2008, 99: 1716

    11. [11]

      [11] Liang D, Cui S Y, Gao J, Wang J H, Chen P, Hou Z Y. Chin J Catal (梁丹, 崔世玉, 高静, 王军华, 陈平, 侯昭胤. 催化学报), 2011, 32, 1831

    12. [12]

      [12] Pagliaro M, Rossi M. The Future of Glycerol. Cambridge: Royal Society of Chemistry, 2008

    13. [13]

      [13] Biesiada A, Nawirska A, Kucharska A, Sokol-Letowska A. Ecol Chem Eng A, 2011, 18: 9

    14. [14]

      [14] Kimura H, Imanaka T, Yokota Y. JP Patent 06279352A. 1994

    15. [15]

      [15] Caselli G, Monatovanini M, Gandolfi C A, Allegretti M, Fiorentino S, Pellegrini L, Melillo G, Bertini R, Sabbatini W, Anacardio R, Calvenna G, Sciortino G, Teti A. J Bone Miner Res, 1997, 12: 972

    16. [16]

      [16] Villa A, Chan-Thaw C E, Prati L. Appl Catal B, 2010, 96: 541

    17. [17]

      [17] Zope B N, Davis S E, Davis R J. Top Catal, 2012, 55: 24

    18. [18]

      [18] Yakusheva T S. Bull Exp Biol Med, 1958, 45: 52

    19. [19]

      [19] Gandolfi C A, Cotini L, Mantovanini M, Caselli G, Clavenna G, Omini C. WO Patent 9 410 127. 1994

    20. [20]

      [20] Dimitratos N, Lopez-Sanchez J A, Lennon D, Porta F, Prati L, Villa A. Catal Lett, 2006, 108: 147

    21. [21]

      [21] Dimitratos N, Messi C, Porta F, Prati L, Villa A. J Mol Catal A, 2006, 256: 21

    22. [22]

      [22] Dimitratos N, Porta F, Prati L. Appl Catal A, 2005, 291: 210

    23. [23]

      [23] Ma H, Nie X, Cai J Y, Chen C, Gao J, Miao H, Xu J. Sci China Chem, 2010, 53: 1497

    24. [24]

      [24] Cai J Y, Ma H, Zhang J J, Song Q, Du Z T, Huang Y Z, Xu J. Chem Eur J, 2013, 19: 14215

    25. [25]

      [25] Simões M, Baranton S, Coutanceau C. Appl Catal B, 2010, 93: 354

    26. [26]

      [26] Kimura H, Yokota Y, Sawamoto Y. Catal Lett, 2005, 99: 133

  • 加载中
    1. [1]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    2. [2]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    3. [3]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    4. [4]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    5. [5]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    6. [6]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    7. [7]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    8. [8]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    9. [9]

      Zian Fang Qianqian Wen Yidi Wang Hongxia Ouyang Qi Wang Qiuping Li . The Test Paper for Metal Ion: A Popular Science Experiment Based on Color Aesthetics. University Chemistry, 2024, 39(5): 108-115. doi: 10.3866/PKU.DXHX202310032

    10. [10]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    11. [11]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    12. [12]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    13. [13]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    14. [14]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    15. [15]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    16. [16]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    17. [17]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    20. [20]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

Metrics
  • PDF Downloads(0)
  • Abstract views(1246)
  • HTML views(162)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return