Citation: Fanlu Meng, Lin Li, Zhong Wu, Haixia Zhong, Jianchen Li, Junmin Yan. Facile preparation of N-doped carbon nanofiber aerogels from bacterial cellulose as an efficient oxygen reduction reaction electrocatalyst[J]. Chinese Journal of Catalysis, ;2014, 35(6): 877-883. doi: 10.1016/S1872-2067(14)60126-1 shu

Facile preparation of N-doped carbon nanofiber aerogels from bacterial cellulose as an efficient oxygen reduction reaction electrocatalyst

  • Corresponding author: Junmin Yan, 
  • Received Date: 31 March 2014
    Available Online: 28 April 2014

    Fund Project: 中国科学院“百人计划”;国家重点基础研究发展计划(973计划,2014CB932300,2012CB215500);国家自然科学基金(20921002,21101147,21203176). (973计划,2014CB932300,2012CB215500);国家自然科学基金(20921002,21101147,21203176)

  • Carbon aerogels have attracted considerable attention over the past few decades as promising materials for catalyst supports, electrodes for supercapacitors and lithium-ion batteries, and adsorbents. However, expensive and toxic precursors as well as complicated synthetic methods dramatically limit their large-scale production and application. In this work, we developed a facile and effective route to prepare a N-doped carbon nanofiber aerogel (N-CNFA) with low mass density, continuous porosity, high specific surface area, and electrical conductivity from a bacterial cellulose precursor. Because of the highly porous and interconnected 3D structure, the obtained N-doped carbon aerogel was used directly as a catalyst for the oxygen reduction reaction (ORR), and it exhibited superior catalytic activity. This activity was much higher than that obtained without N-doping, and it can potentially be applied to high-performance fuel cells.
  • 加载中
    1. [1]

      [1] Pekala R W. J Mater Sci, 1989, 24: 3221

    2. [2]

      [2] Moreno-Castilla C, Maldonado-Hódar F J. Carbon, 2005, 43: 455

    3. [3]

      [3] Biener J, Stadermann M, Suss M, Worsley M A, Biener M M, Rose KA, Baumann T F. Energy Environ Sci, 2011, 4: 656

    4. [4]

      [4] Bryning M B, Milkie D E, Islam M F, Hough L A, Kikkawa J M, Yodh A G. Adv Mater, 2007, 19: 661

    5. [5]

      [5] Antonietti M, Fechler N, Fellinger T P. Chem Mater, 2014, 26: 196

    6. [6]

      [6] Rolison D R. Science, 2003, 299: 1698

    7. [7]

      [7] Pierre A C, Pajonk G M. Chem Rev, 2002, 102: 4243

    8. [8]

      [8] Pekala R W, Farmer J C, Alviso C T, Tran T D, Mayer S T, Miller J M, Dunn B. J Non-Cryst Solids, 1998, 225: 74

    9. [9]

      [9] Saliger R, Fischer U, Herta C, Fricke J. J Non-Cryst Solids, 1998, 225: 81

    10. [10]

      [10] Hüsing N, Schubert U. Angew Chem Int Ed, 1998, 37: 22

    11. [11]

      [11] Pröbstle H, Schmitt C, Fricke J. J Power Sources, 2002, 105: 189

    12. [12]

      [12] Li W C, Reichenauer G, Fricke J. Carbon, 2002, 40: 2955

    13. [13]

      [13] Frackowiak E, Beguin F. Carbon, 2001, 39: 937

    14. [14]

      [14] Xiong W, Liu M X, Gan L H, Lv Y K, Xu Z J, Hao Z X, Chen L W. Colloids Surf A, 2012, 411: 34

    15. [15]

      [15] Kabbour H, Baumann T F, Satcher J H Jr, Saulnier A, Ahn C C. Chem Mater, 2006, 18: 6085

    16. [16]

      [16] Chen L F, Huang Z H, Liang H W, Guan Q F, Yu S H. Adv Mater, 2013, 25: 4746

    17. [17]

      [17] Chen Z P, Ren W C, Gao L B, Liu B L, Pei S F, Cheng H M. Nat Mater, 2011, 10: 424

    18. [18]

      [18] Wu Z Y, Li C, Liang H W, Zhang Y N, Wang X, Chen J F, Yu S H. Sci Rep, 2014, doi: 10.1038/srep04079

    19. [19]

      [19] Pekala R W, Alviso C T, Kong F M, Hulsey S S. J Non-Cryst Solids, 1992, 145: 90

    20. [20]

      [20] Job N, Théry A, Pirard R, Marien J, Kocon L, Rouzaud J N, Béguin F, Pirard J P. Carbon, 2005, 43: 2481

    21. [21]

      [21] Tamon H, Ishizaka H, Araki T, Okazaki M. Carbon, 1998, 36: 1257

    22. [22]

      [22] Tamon H, Ishizaka H, Mikami M, Okazaki M. Carbon, 1997, 35: 791

    23. [23]

      [23] Zhang S T, Fu R W, Wu D C, Xu W, Ye Q W, Chen Z L. Carbon, 2004, 42: 3209

    24. [24]

      [24] Mirzaeian M, Hall P J. Electrochim Acta, 2009, 54: 7444

    25. [25]

      [25] Wu D C, Fu R W, Zhang S T, Dresselhaus M S, Dresselhaus G. Carbon, 2004, 42: 2033

    26. [26]

      [26] Tamon H, Ishizaka H, Yamamoto T, Suzuki T. Carbon, 1999, 37: 2049

    27. [27]

      [27] Lee J, Kim J, Hyeon T. Adv Mater, 2006, 18: 2073

    28. [28]

      [28] Hanzawa Y, Hatori H, Yoshizawa N, Yamada Y. Carbon, 2002, 40: 575

    29. [29]

      [29] Bekyarova E, Kaneko K. Adv Mater, 2000, 12: 1625

    30. [30]

      [30] Huang Y, Zhu C L, Yang J Z, Nie Y, Chen C T, Sun D P. Cellulose, 2014, 21: 1

    31. [31]

      [31] Wu Z Y, Li C, Liang H W, Chen J F, Yu S H. Angew Chen Int Ed, 2013, 52: 2925

    32. [32]

      [32] Long C L, Qi D P, Wei T, Yan J, Jiang L L, Fan Z J. Adv Funct Mater, 2014, doi: 10.1002/adfm.201304269

    33. [33]

      [33] Wang Z W, Li B, Xin Y C, Liu J G, Yao Y F, Zou Z G. Chin J Catal (汪忠伟, 黎波, 辛宇尘, 刘建国, 姚颖方, 邹志刚. 催化学报), 2014, 35: 509

  • 加载中
    1. [1]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    4. [4]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    5. [5]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    6. [6]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    7. [7]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    8. [8]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    9. [9]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    10. [10]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    11. [11]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    12. [12]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    13. [13]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    16. [16]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    17. [17]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    18. [18]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    19. [19]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    20. [20]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

Metrics
  • PDF Downloads(197)
  • Abstract views(739)
  • HTML views(99)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return