Citation: John Matthiesen, Thomas Hoff, Chi Liu, Charles Pueschel, Radhika Rao, Jean-Philippe Tessonnier. Functional carbons and carbon nanohybrids for the catalytic conversion of biomass to renewable chemicals in the condensed phase[J]. Chinese Journal of Catalysis, ;2014, 35(6): 842-855. doi: 10.1016/S1872-2067(14)60122-4 shu

Functional carbons and carbon nanohybrids for the catalytic conversion of biomass to renewable chemicals in the condensed phase

  • Corresponding author: Jean-Philippe Tessonnier, 
  • Received Date: 15 April 2014
    Available Online: 25 April 2014

  • The production of chemicals from lignocellulosic biomass provides opportunities to synthesize chemicals with new functionalities and grow a more sustainable chemical industry. However, new challenges emerge as research transitions from petrochemistry to biorenewable chemistry. Compared to petrochemisty, the selective conversion of biomass-derived carbohydrates requires most catalytic reactions to take place at low temperatures (< 300℃) and in the condensed phase to prevent reactants and products from degrading. The stability of heterogeneous catalysts in liquid water above the normal boiling point represents one of the major challenges to overcome. Herein, we review some of the latest advances in the field with an emphasis on the role of carbon materials and carbon nanohybrids in addressing this challenge.
  • 加载中
    1. [1]

      [1] Bozell J J, Petersen G R. Green Chem, 2010, 12: 539

    2. [2]

      [2] Shanks B H. Ind Eng Chem Res, 2010, 49: 10212

    3. [3]

      [3] Wang K, Kim K H, Brown R C. Green Chem, 2014, 16: 727

    4. [4]

      [4] López D E, Goodwin J G Jr, Bruce D A, Lotero E. Appl Catal A, 2005, 295: 97

    5. [5]

      [5] Liu Y J, Lotero E, Goodwin J G Jr, Lu C Q. J Catal, 2007, 246: 428

    6. [6]

      [6] Xi Y Z, Davis R J. J Catal, 2008, 254: 190

    7. [7]

      [7] Xi Y Z, Davis R J. J Catal, 2009, 268: 307

    8. [8]

      [8] Ravenelle R M, Schüβler F, D'Amico A, Danilina N, van Bokhoven J A, Lercher J A, Jones C W, Sievers C. J Phys Chem C, 2010, 114: 19582

    9. [9]

      [9] van Putten R-J, van der Waal J C, de Jong E, Rasrendra C B, Heeres H J, de Vries J G. Chem Rev, 2013, 113: 1499

    10. [10]

      [10] Besson M, Gallezot P, Pinel C. Chem Rev, 2013, 114: 1827

    11. [11]

      [11] Jin F, Enomoto H. Energy Environ Sci, 2011, 4: 382

    12. [12]

      [12] Yabushita M, Kobayashi H, Fukuoka A. Appl Catal B, 2014, 145: 1

    13. [13]

      [13] Kobayashi H, Fukuoka A. Green Chem, 2013, 15: 1740

    14. [14]

      [14] Ravenelle R M, Copeland J R, Kim W-G, Crittenden J C, Sievers C. ACS Catal, 2011, 1: 552

    15. [15]

      [15] Lanzl C A, Baltrusaitis J, Cwiertny D M. Langmuir, 2012, 28: 15797

    16. [16]

      [16] Pham H N, Anderson A E, Johnson R L, Schmidt-Rohr K, Datye A K. Angew Chem Int Ed, 2012, 51: 13163

    17. [17]

      [17] Kruger J S, Choudhary V, Nikolakis V, Vlachos D G. ACS Catal, 2013, 3: 1279

    18. [18]

      [18] Kruger J S, Nikolakis V, Vlachos D G. Appl Catal A, 2014, 469: 116

    19. [19]

      [19] Koichumanova K, Vikla A K K, de Vlieger D J M, Seshan K, Mojet B L, Lefferts L. ChemSusChem, 2013, 6: 1717

    20. [20]

      [20] Ravenelle R M, Diallo F Z, Crittenden J C, Sievers C. ChemCatChem, 2012, 4: 492

    21. [21]

      [21] Pollock R A, Gor G Y, Walsh B R, Fry J, Ghampson I T, Melnichenko Y B, Kaiser H, DeSisto W J, Wheeler M C, Frederick B G. J Phys Chem C, 2012, 116: 22802

    22. [22]

      [22] Mo N, Savage P E. ACS Sus Chem Eng, 2013, 2: 88

    23. [23]

      [23] Zope B N, Davis S E, Davis R J. Top Catal, 2012, 55: 24

    24. [24]

      [24] Pham H N, Pagan-Torres Y J, Serrano-Ruiz J C, Wang D, Dumesic J A, Datye A K. Appl Catal A, 2011, 397: 153

    25. [25]

      [25] Delgado S N, Yap D, Vivier L, Especel C. J Mol Catal A, 2013, 367: 89

    26. [26]

      [26] Yadav G D, Nair J J. Microporous Mesoporous Mater, 1999, 33: 1

    27. [27]

      [27] Su C, Loh K P. Acc Chem Res, 2013, 46: 2275

    28. [28]

      [28] Bore M T, Marzke R F, Ward T L, Datye A K. J Mater Chem, 2005, 15: 5022

    29. [29]

      [29] Ravenelle R M, Copeland J R, van Pelt A H, Crittenden J C, Sievers C. Top Catal, 2012, 55: 162

    30. [30]

      [30] Margolese D, Melero J A, Christiansen S C, Chmelka B F, Stucky G D. Chem Mater, 2000, 12: 2448

    31. [31]

      [31] Mbaraka I K, Radu D R, Lin V S Y, Shanks B H. J Catal, 2003, 219: 329

    32. [32]

      [32] Mbaraka I K, Shanks B H. J Catal, 2005, 229: 365

    33. [33]

      [33] Mbaraka I K, Shanks B H. J Catal, 2006, 244: 78

    34. [34]

      [34] Bootsma J A, Shanks B H. Appl Catal A, 2007, 327: 44

    35. [35]

      [35] Bootsma J A, Entorf M, Eder J, Shanks B H. Bioresour Technol, 2008, 99: 5226

    36. [36]

      [36] Miao S, Shanks B H. Appl Catal A, 2009, 359: 113

    37. [37]

      [37] Dhainaut J, Dacquin J-P, Lee A F, Wilson K. Green Chem, 2010, 12: 296

    38. [38]

      [38] Melero J A, Bautista L F, Morales G, Iglesias J, Sánchez-Vázquez R. Chem Eng J, 2010, 161: 323

    39. [39]

      [39] Crisci A J, Tucker M H, Lee M-Y, Jang S G, Dumesic J A, Scott S L. ACS Catal, 2011, 1: 719

    40. [40]

      [40] Tsai C-H, Chen H-T, Althaus S M, Mao K, Kobayashi T, Pruski M, Lin V S Y. ACS Catal, 2011, 1: 729

    41. [41]

      [41] Tucker M H, Crisci A J, Wigington B N, Phadke N, Alamillo R, Zhang J, Scott S L, Dumesic J A. ACS Catal, 2012, 2: 1865

    42. [42]

      [42] Zapata P A, Huang Y, Gonzalez-Borja M A, Resasco D E. J Catal, 2013, 308: 82

    43. [43]

      [43] Zapata P A, Faria J, Ruiz M P, Jentoft R E, Resasco D E. J Am Chem Soc, 2012, 134: 8570

    44. [44]

      [44] Ryoo R, Joo S H, Jun S. J Phys Chem B, 1999, 103: 7743

    45. [45]

      [45] Jun S, Joo S H, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O. J Am Chem Soc, 2000, 122: 10712

    46. [46]

      [46] Yu J-S, Kang S, Yoon S B, Chai G. J Am Chem Soc, 2002, 124: 9382

    47. [47]

      [47] Choi M, Ryoo R. Nat Mater, 2003, 2: 473

    48. [48]

      [48] Kobayashi H, Komanoya T, Hara K, Fukuoka A. ChemSusChem, 2010, 3: 440

    49. [49]

      [49] Pang J F, Wang A Q, Zheng M Y, Zhang T. Chem Commun, 2010, 46: 6935

    50. [50]

      [50] Ressler T, Walter A, Scholz J, Tessonnier J-P, Su D S. J Catal, 2010, 271: 305

    51. [51]

      [51] Arrigo R, Schuster M E, Wrabetz S, Girgsdies F, Tessonnier J-P, Centi G, Perathoner S, Su D S, Schlögl R. ChemSusChem, 2012, 5: 577

    52. [52]

      [52] Marichy C, Tessonnier J-P, Ferro M C, Lee K-H, Schlögl R, Pinna N, Willinger M-G. J Mater Chem, 2012, 22: 7323

    53. [53]

      [53] Mette K, Bergmann A, Tessonnier J-P, Hävecker M, Ressler T, Schlögl R, Strasser P, Behrens M. ChemCatChem, 2012, 4: 851

    54. [54]

      [54] Tessonnier J-P, Goubert-Renaudin S, Alia S, Yan Y, Barteau M A. Langmuir, 2013, 29: 393

    55. [55]

      [55] Marichy C, Russo P A, Latino M, Tessonnier J-P, Willinger M-G, Donato N, Neri G, Pinna N. J Phys Chem C, 2013, 117: 19729

    56. [56]

      [56] Wang X R, Tabakman S M, Dai H J. J Am Chem Soc, 2008, 130: 8152

    57. [57]

      [57] Liang Y Y, Li Y G, Wang H L, Dai H J. J Am Chem Soc, 2013, 135: 2013

    58. [58]

      [58] Liu C C, Lee S, Su D, Lee B, Lee S, Winans R E, Yin C, Vajda S, Pfefferle L, Haller G L. Langmuir, 2012, 28: 17159

    59. [59]

      [59] Liu C C, Lee S, Su D, Zhang Z T, Pfefferle L, Haller G L. J Phys Chem C, 2012, 116: 21742

    60. [60]

      [60] Álvarez M G, Frey A M, Bitter J H, Segarra A M, de Jong K P, Medina F. Appl Catal B, 2013, 134-135: 231

    61. [61]

      [61] Frey A M, Yang J, Feche C, Essayem N, Stellwagen D R, Figueras F, de Jong K P, Bitter J H. J Catal, 2013, 305: 1

    62. [62]

      [62] Shen M, Resasco D E. Langmuir, 2009, 25: 10843

    63. [63]

      [63] Crossley S, Faria J, Shen M, Resasco D E. Science, 2010, 327: 68

    64. [64]

      [64] Faria J, Ruiz M P, Resasco D E. Adv Synth Catal, 2010, 352: 2359

    65. [65]

      [65] Ruiz M P, Faria J, Shen M, Drexler S, Prasomsri T, Resasco D E. ChemSusChem, 2011, 4: 964

    66. [66]

      [66] Drexler S, Faria J, Ruiz M P, Harwell J H, Resasco D E. Energy Fuels, 2012, 26: 2231

    67. [67]

      [67] Zapata P A, Faria J, Pilar Ruiz M, Resasco D E. Top Catal, 2012, 55: 38

    68. [68]

      [68] Xiong H F, Nolan M, Shanks B H, Datye A K. Appl Catal A, 2014, 471: 165

    69. [69]

      [69] Xiong H F, Pham H N, Datye A K. J Catal, 2013, 302: 93

    70. [70]

      [70] Xiong H F, Wang T F, Shanks B H, Datye A K. Catal Lett, 2013, 143: 509

    71. [71]

      [71] Hara M, Yoshida T, Takagaki A, Takata T, Kondo J N, Hayashi S, Domen K. Angew Chem Int Ed, 2004, 43: 2955

    72. [72]

      [72] Toda M, Takagaki A, Okamura M, Kondo J N, Hayashi S, Domen K, Hara M. Nature, 2005, 438: 178

    73. [73]

      [73] Okamura M, Takagaki A, Toda M, Kondo J N, Domen K, Tatsumi T, Hara M, Hayashi S. Chem Mater, 2006, 18: 3039

    74. [74]

      [74] Nakajima K, Hara M. ACS Catal, 2012, 2: 1296

    75. [75]

      [75] Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M. J Am Chem Soc, 2008, 130: 12787

    76. [76]

      [76] Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M. Solid State Sci, 2010, 12: 1029

    77. [77]

      [77] Yamaguchi D, Kitano M, Suganuma S, Nakajima K, Kato H, Hara M. J Phys Chem C, 2009, 113: 3181

    78. [78]

      [78] Yamaguchi D, Hara M. Solid State Sci, 2010, 12: 1018

    79. [79]

      [79] Kitano M, Yamaguchi D, Suganuma S, Nakajima K, Kato H, Hayashi S, Hara M. Langmuir, 2009, 25: 5068

    80. [80]

      [80] Suganuma S, Nakajima K, Kitano M, Hayashi S, Hara M. Chemsuschem, 2012, 5: 1841

    81. [81]

      [81] Takagaki A, Toda M, Okamura M, Kondo J N, Hayashi S, Domen K, Hara M. Catal Today, 2006, 116: 157

    82. [82]

      [82] Hara M. ChemSusChem, 2009, 2: 129

    83. [83]

      [83] Hara M. Top Catal, 2010, 53: 805

    84. [84]

      [84] Chung P-W, Charmot A, Gazit O M, Katz A. Langmuir, 2012, 28: 15222

    85. [85]

      [85] Chung P-W, Charmot A, Olatunji-Ojo O A, Durkin K A, Katz A. ACS Catal, 2014, 4: 302

    86. [86]

      [86] Anderson J M, Johnson R L, Schmidt-Rohr K, Shanks B H. Catal Commun, 2014, 51: 33

    87. [87]

      [87] Budarin V, Clark J H, Hardy J J E, Luque R, Milkowski K, Tavener S J, Wilson A J. Angew Chem Int Ed, 2006, 45: 3782

    88. [88]

      [88] Shuttleworth P S, Budarin V, White R J, Gun'ko V M, Luque R, Clark J H. Chem Eur J, 2013, 19: 9351

    89. [89]

      [89] White R J, Budarin V L, Clark J H. ChemSusChem, 2008, 1: 408

    90. [90]

      [90] White R J, Budarin V, Luque R, Clark J H, Macquarrie D J. Chem Soc Rev, 2009, 38: 3401

    91. [91]

      [91] White R J, Antonio C, Budarin V L, Bergstrom E, Thomas-Oates J, Clark J H. Adv Funct Mater, 2010, 20: 1834

    92. [92]

      [92] Hunt A J, Sin E H K, Marriott R, Clark J H. ChemSusChem, 2010, 3: 306

    93. [93]

      [93] Budarin V, Luque R, Macquarrie D J, Clark J H. Chem Eur J, 2007, 13: 6914

    94. [94]

      [94] Budarin V L, Clark J H, Luque R, Macquarrie D J. Chem Commun, 2007: 634

    95. [95]

      [95] Budarin V L, Clark J H, Luque R, Macquarrie D J, White R J. Green Chem, 2008, 10: 382

    96. [96]

      [96] Clark J H, Budarin V, Dugmore T, Luque R, Macquarrie D J, Strelko V. Catal Commun, 2008, 9: 1709

    97. [97]

      [97] Luque R, Budarin V, Clark J H, Macquarrie D J. Green Chem, 2009, 11: 459

    98. [98]

      [98] Luque R, Clark J H, Yoshida K, Gai P L. Chem Commun, 2009: 5305

    99. [99]

      [99] White R J, Luque R, Budarin V L, Clark J H, Macquarrie D J. Chem Soc Rev, 2009, 38: 481

    100. [100]

      [100] Luque R, Clark J H. Catal Commun, 2010, 11: 928

    101. [101]

      [101] Wang Q, Li H, Chen L Q, Huang X J. Carbon, 2001, 39: 2211

    102. [102]

      [102] Titirici M M, Thomas A, Antonietti M. Adv Funct Mater, 2007, 17: 1010

    103. [103]

      [103] Titirici M M, Thomas A, Antonietti M. J Mater Chem, 2007, 17: 3412

    104. [104]

      [104] Makowski P, Cakan R D, Antonietti M, Goettmann F, Titirici M M. Chem Commun, 2008: 999

    105. [105]

      [105] Demir-Cakan R, Baccile N, Antonietti M, Titirici M M. Chem Mater, 2009, 21: 484

    106. [106]

      [106] White R J, Antonietti M, Titirici M M. J Mater Chem, 2009, 19: 8645

    107. [107]

      [107] Demir-Cakan R, Makowski P, Antonietti M, Goettmann F, Titirici M M. Catal Today, 2010, 150: 115

    108. [108]

      [108] Zhao L, Bacsik Z, Hedin N, Wei W, Sun Y H, Antonietti M, Titirici M M. ChemSusChem, 2010, 3: 840

    109. [109]

      [109] Zhao L, Fan L Z, Zhou M Q, Guan H, Qiao S Y, Antonietti M, Titirici M M. Adv Mater, 2010, 22: 5202

    110. [110]

      [110] White R J, Yoshizawa N, Antonietti M, Titirici M M. Green Chem, 2011, 13: 2428

    111. [111]

      [111] Tang K, Fu L J, White R J, Yu L H, Titirici M M, Antonietti M, Maier J. Adv Energy Mater, 2012, 2: 873

    112. [112]

      [112] Tang K, White R J, Mu X K, Titirici M M, van Aken P A, Maier J. ChemSusChem, 2012, 5: 400

    113. [113]

      [113] Wohlgemuth S A, Vilela F, Titirici M M, Antonietti M. Green Chem, 2012, 14: 741

    114. [114]

      [114] Wohlgemuth S A, White R J, Willinger M G, Titirici M M, Antonietti M. Green Chem, 2012, 14: 1515

    115. [115]

      [115] Sevilla M, Yu L H, Fellinger T P, Fuertes A B, Titirici M M. RSC Adv, 2013, 3: 9904

    116. [116]

      [116] Yu L H, Brun N, Sakaushi K, Eckert J, Titirici M M. Carbon, 2013, 61: 245

    117. [117]

      [117] Brun N, Sakaushi K, Eckert J, Titirici M M. ACS Sus Chem Eng, 2014, 2: 126

    118. [118]

      [118] Titirici M M, White R J, Falco C, Sevilla M. Energy Environ Sci, 2012, 5: 6796

    119. [119]

      [119] Hu B, Wang K, Wu L H, Yu S H, Antonietti M, Titirici M M. Adv Mater, 2010, 22: 813

    120. [120]

      [120] Funke A, Ziegler F. Biofuels Bioprod Bioref, 2010, 4: 160

    121. [121]

      [121] Ming J, Liu R X, Liang G F, Cheng H Y, Yu Y C, Zhao F Y. J Mater Chem, 2011, 21: 10929

    122. [122]

      [122] Qi X H, Guo H X, Li L Y, Smith R L. Chemsuschem, 2012, 5: 2215

    123. [123]

      [123] Zhang X C, Zhang Z, Wang F, Wang Y H, Song Q, Xu J. J Mol Catal A, 2013, 377: 102

    124. [124]

      [124] Sun S H, Bai R X, Gu Y L. Chem Eur J, 2014, 20: 549

    125. [125]

      [125] Su D S, Perathoner S, Centi G. Chem Rev, 2013, 113: 5782

    126. [126]

      [126] Zhu J, Holmen A, Chen D. ChemCatChem, 2013, 5: 378

    127. [127]

      [127] Ji J Y, Zhang G H, Chen H Y, Wang S L, Zhang G L, Zhang F B, Fan X B. Chem Sci, 2011, 2: 484

    128. [128]

      [128] Liu R L, Chen J Z, Huang X, Chen L M, Ma L L, Li X J. Green Chem, 2013, 15: 2895

    129. [129]

      [129] Tessonnier J-P, Villa A, Majoulet O, Su D S, Schlögl R. Angew Chem Int Ed, 2009, 48: 6543

    130. [130]

      [130] Villa A, Tessonnier J-P, Majoulet O, Su D S, Schlögl R. Chem Commun, 2009: 4405

    131. [131]

      [131] Villa A, Tessonnier J-P, Majoulet O, Su D S, Schlögl R. ChemSusChem, 2010, 3: 241

    132. [132]

      [132] Yuan C F, Chen W F, Yan L F. J Mater Chem, 2012, 22: 7456

    133. [133]

      [133] Wang A, Li C, Zheng M, Zhang T. In: Hoboken N J Ed. The Role of Green Chemistry in Biomass Processing and Conversion. USA: John Wiley & Sons, Inc., 2012. 313

    134. [134]

      [134] Wang H J, Zhu L L, Peng S, Peng F, Yu H, Yang J. Renew Energy, 2012, 37: 192

    135. [135]

      [135] Zhang Z G, Jackson J E, Miller D J. Appl Catal A, 2001, 219: 89

    136. [136]

      [136] Jang H, Kim S-H, Lee D, Shim S E, Baeck S-H, Kim B S, Chang T S. J Mol Catal A, 2013, 380: 57

    137. [137]

      [137] Lahr D G, Shanks B H. J Catal, 2005, 232: 386

    138. [138]

      [138] Maris E P, Davis R J. J Catal, 2007, 249: 328

    139. [139]

      [139] Li B D, Wang J, Yuan Y Z, Ariga H, Takakusagi S, Asakura K. ACS Catal, 2011, 1: 1521

    140. [140]

      [140] Wu Z J, Mao Y Z, Wang X X, Zhang M H. Green Chem, 2011, 13: 1311

    141. [141]

      [141] Sun J, Liu H. Catal Today, 2014, in press

    142. [142]

      [142] Palkovits R, Tajvidi K, Procelewska J, Rinaldi R, Ruppert A. Green Chem, 2010, 12: 972

    143. [143]

      [143] Hilgert J, Meine N, Rinaldi R, Schüth F. Energy Environ Sci, 2013, 6: 92

    144. [144]

      [144] Deng W P, Tan X S, Fang W H, Zhang Q H, Wang Y. Catal Lett, 2009, 133: 167

    145. [145]

      [145] Ren H, Yu W T, Salciccioli M, Chen Y, Huang Y L, Xiong K, Vlachos D G, Chen J G. ChemSusChem, 2013, 6: 798

    146. [146]

      [146] Ren H, Chen Y, Huang Y L, Deng W H, Vlachos D G, Chen J G. Green Chem, 2014, 16: 761

    147. [147]

      [147] Han J X, Duan J Z, Chen P, Lou H, Zheng X M. Adv Synth Catal, 2011, 353: 2577

    148. [148]

      [148] Han J X, Duan J Z, Chen P, Lou H, Zheng X M, Hong H P. Green Chem, 2011, 13: 2561

    149. [149]

      [149] Han J X, Duan J Z, Chen P, Lou H, Zheng X M, Hong H P. ChemSusChem, 2012, 5: 727

    150. [150]

      [150] Gosselink R W, Stellwagen D R, Bitter J H. Angew Chem Int Ed, 2013, 52: 5089

    151. [151]

      [151] Jongerius A L, Bruijnincx P C A, Weckhuysen B M. Green Chem, 2013, 15: 3049

    152. [152]

      [152] Jongerius A L, Gosselink R W, Dijkstra J, Bitter J H, Bruijnincx P C A, Weckhuysen B M. ChemCatChem, 2013, 5: 2964

    153. [153]

      [153] Qin Y, Chen P, Duan J Z, Han J X, Lou H, Zheng X M, Hong H P. RSC Adv, 2013, 3: 17485

    154. [154]

      [154] Davis S E, Ide M S, Davis R J. Green Chem, 2013, 15: 17

    155. [155]

      [155] Guo Z, Liu B, Zhang Q H, Deng W P, Wang Y, Yang Y H. Chem Soc Rev, 2014, 43: 3480

    156. [156]

      [156] Prati L, Villa A, Lupini A R, Veith G M. Phys Chem Chem Phys, 2012, 14: 2969

    157. [157]

      [157] Gil S, Muñoz L, Sánchez-Silva L, Romero A, Valverde J L. Chem Eng J, 2011, 172: 418

    158. [158]

      [158] Gil S, Marchena M, Fernández C M, Sánchez-Silva L, Romero A, Valverde J L. Appl Catal A, 2013, 450: 189

    159. [159]

      [159] Rodrigues E G, Delgado J J, Chen X, Pereira M F R, órfão J J M. Ind Eng Chem Res, 2012, 51: 15884

    160. [160]

      [160] Tan X S, Deng W P, Liu M, Zhang Q H, Wang Y. Chem Commun, 2009: 7179

    161. [161]

      [161] Villa A, Schiavoni M, Campisi S, Veith G M, Prati L. ChemSusChem, 2013, 6: 609

    162. [162]

      [162] Wang D, Villa A, Su D S, Prati L, Schlögl R. ChemCatChem, 2013, 5: 2717

    163. [163]

      [163] Arrigo R, Wrabetz S, Schuster M E, Wang D, Villa A, Rosenthal D, Girsgdies F, Weinberg G, Prati L, Schlögl R, Su D S. Phys Chem Chem Phys, 2012, 14: 10523

    164. [164]

      [164] Chizari K, Janowska I, Houllé M, Florea I, Ersen O, Romero T, Bernhardt P, Ledoux M J, Pham-Huu C. Appl Catal A, 2010, 380: 72

    165. [165]

      [165] Chen P P, Chew L M, Kostka A, Muhler M, Xia W. Catal Sci Technol, 2013, 3: 1964

    166. [166]

      [166] Chen P R, Yang F K, Kostka A, Xia W. ACS Catal, 2014, 4: 1478

    167. [167]

      [167] Rinaldi A, Tessonnier J-P, Schuster M E, Blume R, Girgsdies F, Zhang Q, Jacob T, Abd Hamid S B, Su D S, Schlögl R. Angew Chem Int Ed, 2011, 50: 3313

    168. [168]

      [168] Shao L D, Zhang B S, Zhang W, Teschner D, Girgsdies F, Schlögl R, Su D S. Chem Eur J, 2012, 18: 14962

    169. [169]

      [169] Lerf A, He H, Forster M, Klinowski J. J Phys Chem B, 1998, 102: 4477

    170. [170]

      [170] Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, Dékány I. Chem Mater, 2006, 18: 2740

    171. [171]

      [171] Baccile N, Laurent G, Coelho C, Babonneau F, Zhao L, Titirici M M. J Phys Chem C, 2011, 115: 8976

    172. [172]

      [172] Engtrakul C, Irurzun V M, Gjersing E L, Holt J M, Larsen B A, Resasco D E, Blackburn J L. J Am Chem Soc, 2012, 134: 4850

    173. [173]

      [173] Johnson R L, Anderson J M, Shanks B H, Fang X, Hong M, Schmidt-Rohr K. J Magn Reson, 2013, 234: 112

    174. [174]

      [174] Johnson R L, Schmidt-Rohr K. J Magn Reson, 2014, 239: 44

    175. [175]

      [175] Florea I, Ersen O, Arenal R, Ihiawakrim D, Messaoudi C, Chizari K, Janowska I, Pham-Huu C. J Am Chem Soc, 2012, 134: 9672

    176. [176]

      [176] Gómez-Navarro C, Meyer J C, Sundaram R S, Chuvilin A, Kurasch S, Burghard M, Kern K, Kaiser U. Nano Lett, 2010, 10: 1144

    177. [177]

      [177] Guo J J, Morris J R, Ihm Y, Contescu C I, Gallego N C, Duscher G, Pennycook S J, Chisholm M F. Small, 2012, 8: 3283

    178. [178]

      [178] Knop‐Gericke A, Kleimenov E, Hävecker M, Blume R, Teschner D, Zafeiratos S, Schlögl R, Bukhtiyarov V I, Kaichev V V, Prosvirin I P, Nizovskii A I, Bluhm H, Barinov A, Dudin P, Kiskinova M. Adv Catal, 2009, 52: 213

    179. [179]

      [179] Arrigo R, Havecker M, Schlögl R, Su D S. Chem Commun, 2008: 4891

    180. [180]

      [180] Arrigo R, Hävecker M, Wrabetz S, Blume R, Lerch M, McGregor J, Parrott E P J, Zeitler J A, Gladden L F, Knop-Gericke A, Schlögl R, Su D S. J Am Chem Soc, 2010, 132: 9616

    181. [181]

      [181] Grunwaldt J-D, Wagner J B, Dunin-Borkowski R E. ChemCatChem, 2013, 5: 62

    182. [182]

      [182] Zhang B S, Su D S. Small, 2014, 10: 222

    183. [183]

      [183] Gao W, Mueller J E, Anton J, Jiang Q, Jacob T. Angew Chem Int Ed, 2013, 52: 14237

  • 加载中
    1. [1]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332

    2. [2]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    3. [3]

      Wenjing XiongYulin XuFangzhou ZhaoBaokai XiaHongqiang WangWei LiuSheng ChenYongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738

    4. [4]

      Wen-Jing LiJun-Bo WangYu-Heng LiuMo ZhangZhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001

    5. [5]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    6. [6]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    7. [7]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    8. [8]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    9. [9]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    10. [10]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    11. [11]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    12. [12]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    13. [13]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    14. [14]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    15. [15]

      Xuan LiuQing Li . Tailoring interatomic active sites for highly selective electrocatalytic biomass conversion reaction. Chinese Chemical Letters, 2025, 36(4): 110670-. doi: 10.1016/j.cclet.2024.110670

    16. [16]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    17. [17]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    18. [18]

      Qiyan WuQing Li . Topologically close-packed intermetallic alloy electrocatalysts for CO2 reduction towards high value-added multi-carbon chemicals. Chinese Chemical Letters, 2025, 36(1): 110384-. doi: 10.1016/j.cclet.2024.110384

    19. [19]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    20. [20]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

Metrics
  • PDF Downloads(176)
  • Abstract views(787)
  • HTML views(66)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return