Citation:
John Matthiesen, Thomas Hoff, Chi Liu, Charles Pueschel, Radhika Rao, Jean-Philippe Tessonnier. Functional carbons and carbon nanohybrids for the catalytic conversion of biomass to renewable chemicals in the condensed phase[J]. Chinese Journal of Catalysis,
;2014, 35(6): 842-855.
doi:
10.1016/S1872-2067(14)60122-4
-
The production of chemicals from lignocellulosic biomass provides opportunities to synthesize chemicals with new functionalities and grow a more sustainable chemical industry. However, new challenges emerge as research transitions from petrochemistry to biorenewable chemistry. Compared to petrochemisty, the selective conversion of biomass-derived carbohydrates requires most catalytic reactions to take place at low temperatures (< 300℃) and in the condensed phase to prevent reactants and products from degrading. The stability of heterogeneous catalysts in liquid water above the normal boiling point represents one of the major challenges to overcome. Herein, we review some of the latest advances in the field with an emphasis on the role of carbon materials and carbon nanohybrids in addressing this challenge.
-
-
-
[1]
[1] Bozell J J, Petersen G R. Green Chem, 2010, 12: 539
-
[2]
[2] Shanks B H. Ind Eng Chem Res, 2010, 49: 10212
-
[3]
[3] Wang K, Kim K H, Brown R C. Green Chem, 2014, 16: 727
-
[4]
[4] López D E, Goodwin J G Jr, Bruce D A, Lotero E. Appl Catal A, 2005, 295: 97
-
[5]
[5] Liu Y J, Lotero E, Goodwin J G Jr, Lu C Q. J Catal, 2007, 246: 428
-
[6]
[6] Xi Y Z, Davis R J. J Catal, 2008, 254: 190
-
[7]
[7] Xi Y Z, Davis R J. J Catal, 2009, 268: 307
-
[8]
[8] Ravenelle R M, Schüβler F, D'Amico A, Danilina N, van Bokhoven J A, Lercher J A, Jones C W, Sievers C. J Phys Chem C, 2010, 114: 19582
-
[9]
[9] van Putten R-J, van der Waal J C, de Jong E, Rasrendra C B, Heeres H J, de Vries J G. Chem Rev, 2013, 113: 1499
-
[10]
[10] Besson M, Gallezot P, Pinel C. Chem Rev, 2013, 114: 1827
-
[11]
[11] Jin F, Enomoto H. Energy Environ Sci, 2011, 4: 382
-
[12]
[12] Yabushita M, Kobayashi H, Fukuoka A. Appl Catal B, 2014, 145: 1
-
[13]
[13] Kobayashi H, Fukuoka A. Green Chem, 2013, 15: 1740
-
[14]
[14] Ravenelle R M, Copeland J R, Kim W-G, Crittenden J C, Sievers C. ACS Catal, 2011, 1: 552
-
[15]
[15] Lanzl C A, Baltrusaitis J, Cwiertny D M. Langmuir, 2012, 28: 15797
-
[16]
[16] Pham H N, Anderson A E, Johnson R L, Schmidt-Rohr K, Datye A K. Angew Chem Int Ed, 2012, 51: 13163
-
[17]
[17] Kruger J S, Choudhary V, Nikolakis V, Vlachos D G. ACS Catal, 2013, 3: 1279
-
[18]
[18] Kruger J S, Nikolakis V, Vlachos D G. Appl Catal A, 2014, 469: 116
-
[19]
[19] Koichumanova K, Vikla A K K, de Vlieger D J M, Seshan K, Mojet B L, Lefferts L. ChemSusChem, 2013, 6: 1717
-
[20]
[20] Ravenelle R M, Diallo F Z, Crittenden J C, Sievers C. ChemCatChem, 2012, 4: 492
-
[21]
[21] Pollock R A, Gor G Y, Walsh B R, Fry J, Ghampson I T, Melnichenko Y B, Kaiser H, DeSisto W J, Wheeler M C, Frederick B G. J Phys Chem C, 2012, 116: 22802
-
[22]
[22] Mo N, Savage P E. ACS Sus Chem Eng, 2013, 2: 88
-
[23]
[23] Zope B N, Davis S E, Davis R J. Top Catal, 2012, 55: 24
-
[24]
[24] Pham H N, Pagan-Torres Y J, Serrano-Ruiz J C, Wang D, Dumesic J A, Datye A K. Appl Catal A, 2011, 397: 153
-
[25]
[25] Delgado S N, Yap D, Vivier L, Especel C. J Mol Catal A, 2013, 367: 89
-
[26]
[26] Yadav G D, Nair J J. Microporous Mesoporous Mater, 1999, 33: 1
-
[27]
[27] Su C, Loh K P. Acc Chem Res, 2013, 46: 2275
-
[28]
[28] Bore M T, Marzke R F, Ward T L, Datye A K. J Mater Chem, 2005, 15: 5022
-
[29]
[29] Ravenelle R M, Copeland J R, van Pelt A H, Crittenden J C, Sievers C. Top Catal, 2012, 55: 162
-
[30]
[30] Margolese D, Melero J A, Christiansen S C, Chmelka B F, Stucky G D. Chem Mater, 2000, 12: 2448
-
[31]
[31] Mbaraka I K, Radu D R, Lin V S Y, Shanks B H. J Catal, 2003, 219: 329
-
[32]
[32] Mbaraka I K, Shanks B H. J Catal, 2005, 229: 365
-
[33]
[33] Mbaraka I K, Shanks B H. J Catal, 2006, 244: 78
-
[34]
[34] Bootsma J A, Shanks B H. Appl Catal A, 2007, 327: 44
-
[35]
[35] Bootsma J A, Entorf M, Eder J, Shanks B H. Bioresour Technol, 2008, 99: 5226
-
[36]
[36] Miao S, Shanks B H. Appl Catal A, 2009, 359: 113
-
[37]
[37] Dhainaut J, Dacquin J-P, Lee A F, Wilson K. Green Chem, 2010, 12: 296
-
[38]
[38] Melero J A, Bautista L F, Morales G, Iglesias J, Sánchez-Vázquez R. Chem Eng J, 2010, 161: 323
-
[39]
[39] Crisci A J, Tucker M H, Lee M-Y, Jang S G, Dumesic J A, Scott S L. ACS Catal, 2011, 1: 719
-
[40]
[40] Tsai C-H, Chen H-T, Althaus S M, Mao K, Kobayashi T, Pruski M, Lin V S Y. ACS Catal, 2011, 1: 729
-
[41]
[41] Tucker M H, Crisci A J, Wigington B N, Phadke N, Alamillo R, Zhang J, Scott S L, Dumesic J A. ACS Catal, 2012, 2: 1865
-
[42]
[42] Zapata P A, Huang Y, Gonzalez-Borja M A, Resasco D E. J Catal, 2013, 308: 82
-
[43]
[43] Zapata P A, Faria J, Ruiz M P, Jentoft R E, Resasco D E. J Am Chem Soc, 2012, 134: 8570
-
[44]
[44] Ryoo R, Joo S H, Jun S. J Phys Chem B, 1999, 103: 7743
-
[45]
[45] Jun S, Joo S H, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O. J Am Chem Soc, 2000, 122: 10712
-
[46]
[46] Yu J-S, Kang S, Yoon S B, Chai G. J Am Chem Soc, 2002, 124: 9382
-
[47]
[47] Choi M, Ryoo R. Nat Mater, 2003, 2: 473
-
[48]
[48] Kobayashi H, Komanoya T, Hara K, Fukuoka A. ChemSusChem, 2010, 3: 440
-
[49]
[49] Pang J F, Wang A Q, Zheng M Y, Zhang T. Chem Commun, 2010, 46: 6935
-
[50]
[50] Ressler T, Walter A, Scholz J, Tessonnier J-P, Su D S. J Catal, 2010, 271: 305
-
[51]
[51] Arrigo R, Schuster M E, Wrabetz S, Girgsdies F, Tessonnier J-P, Centi G, Perathoner S, Su D S, Schlögl R. ChemSusChem, 2012, 5: 577
-
[52]
[52] Marichy C, Tessonnier J-P, Ferro M C, Lee K-H, Schlögl R, Pinna N, Willinger M-G. J Mater Chem, 2012, 22: 7323
-
[53]
[53] Mette K, Bergmann A, Tessonnier J-P, Hävecker M, Ressler T, Schlögl R, Strasser P, Behrens M. ChemCatChem, 2012, 4: 851
-
[54]
[54] Tessonnier J-P, Goubert-Renaudin S, Alia S, Yan Y, Barteau M A. Langmuir, 2013, 29: 393
-
[55]
[55] Marichy C, Russo P A, Latino M, Tessonnier J-P, Willinger M-G, Donato N, Neri G, Pinna N. J Phys Chem C, 2013, 117: 19729
-
[56]
[56] Wang X R, Tabakman S M, Dai H J. J Am Chem Soc, 2008, 130: 8152
-
[57]
[57] Liang Y Y, Li Y G, Wang H L, Dai H J. J Am Chem Soc, 2013, 135: 2013
-
[58]
[58] Liu C C, Lee S, Su D, Lee B, Lee S, Winans R E, Yin C, Vajda S, Pfefferle L, Haller G L. Langmuir, 2012, 28: 17159
-
[59]
[59] Liu C C, Lee S, Su D, Zhang Z T, Pfefferle L, Haller G L. J Phys Chem C, 2012, 116: 21742
-
[60]
[60] Álvarez M G, Frey A M, Bitter J H, Segarra A M, de Jong K P, Medina F. Appl Catal B, 2013, 134-135: 231
-
[61]
[61] Frey A M, Yang J, Feche C, Essayem N, Stellwagen D R, Figueras F, de Jong K P, Bitter J H. J Catal, 2013, 305: 1
-
[62]
[62] Shen M, Resasco D E. Langmuir, 2009, 25: 10843
-
[63]
[63] Crossley S, Faria J, Shen M, Resasco D E. Science, 2010, 327: 68
-
[64]
[64] Faria J, Ruiz M P, Resasco D E. Adv Synth Catal, 2010, 352: 2359
-
[65]
[65] Ruiz M P, Faria J, Shen M, Drexler S, Prasomsri T, Resasco D E. ChemSusChem, 2011, 4: 964
-
[66]
[66] Drexler S, Faria J, Ruiz M P, Harwell J H, Resasco D E. Energy Fuels, 2012, 26: 2231
-
[67]
[67] Zapata P A, Faria J, Pilar Ruiz M, Resasco D E. Top Catal, 2012, 55: 38
-
[68]
[68] Xiong H F, Nolan M, Shanks B H, Datye A K. Appl Catal A, 2014, 471: 165
-
[69]
[69] Xiong H F, Pham H N, Datye A K. J Catal, 2013, 302: 93
-
[70]
[70] Xiong H F, Wang T F, Shanks B H, Datye A K. Catal Lett, 2013, 143: 509
-
[71]
[71] Hara M, Yoshida T, Takagaki A, Takata T, Kondo J N, Hayashi S, Domen K. Angew Chem Int Ed, 2004, 43: 2955
-
[72]
[72] Toda M, Takagaki A, Okamura M, Kondo J N, Hayashi S, Domen K, Hara M. Nature, 2005, 438: 178
-
[73]
[73] Okamura M, Takagaki A, Toda M, Kondo J N, Domen K, Tatsumi T, Hara M, Hayashi S. Chem Mater, 2006, 18: 3039
-
[74]
[74] Nakajima K, Hara M. ACS Catal, 2012, 2: 1296
-
[75]
[75] Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M. J Am Chem Soc, 2008, 130: 12787
-
[76]
[76] Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M. Solid State Sci, 2010, 12: 1029
-
[77]
[77] Yamaguchi D, Kitano M, Suganuma S, Nakajima K, Kato H, Hara M. J Phys Chem C, 2009, 113: 3181
-
[78]
[78] Yamaguchi D, Hara M. Solid State Sci, 2010, 12: 1018
-
[79]
[79] Kitano M, Yamaguchi D, Suganuma S, Nakajima K, Kato H, Hayashi S, Hara M. Langmuir, 2009, 25: 5068
-
[80]
[80] Suganuma S, Nakajima K, Kitano M, Hayashi S, Hara M. Chemsuschem, 2012, 5: 1841
-
[81]
[81] Takagaki A, Toda M, Okamura M, Kondo J N, Hayashi S, Domen K, Hara M. Catal Today, 2006, 116: 157
-
[82]
[82] Hara M. ChemSusChem, 2009, 2: 129
-
[83]
[83] Hara M. Top Catal, 2010, 53: 805
-
[84]
[84] Chung P-W, Charmot A, Gazit O M, Katz A. Langmuir, 2012, 28: 15222
-
[85]
[85] Chung P-W, Charmot A, Olatunji-Ojo O A, Durkin K A, Katz A. ACS Catal, 2014, 4: 302
-
[86]
[86] Anderson J M, Johnson R L, Schmidt-Rohr K, Shanks B H. Catal Commun, 2014, 51: 33
-
[87]
[87] Budarin V, Clark J H, Hardy J J E, Luque R, Milkowski K, Tavener S J, Wilson A J. Angew Chem Int Ed, 2006, 45: 3782
-
[88]
[88] Shuttleworth P S, Budarin V, White R J, Gun'ko V M, Luque R, Clark J H. Chem Eur J, 2013, 19: 9351
-
[89]
[89] White R J, Budarin V L, Clark J H. ChemSusChem, 2008, 1: 408
-
[90]
[90] White R J, Budarin V, Luque R, Clark J H, Macquarrie D J. Chem Soc Rev, 2009, 38: 3401
-
[91]
[91] White R J, Antonio C, Budarin V L, Bergstrom E, Thomas-Oates J, Clark J H. Adv Funct Mater, 2010, 20: 1834
-
[92]
[92] Hunt A J, Sin E H K, Marriott R, Clark J H. ChemSusChem, 2010, 3: 306
-
[93]
[93] Budarin V, Luque R, Macquarrie D J, Clark J H. Chem Eur J, 2007, 13: 6914
-
[94]
[94] Budarin V L, Clark J H, Luque R, Macquarrie D J. Chem Commun, 2007: 634
-
[95]
[95] Budarin V L, Clark J H, Luque R, Macquarrie D J, White R J. Green Chem, 2008, 10: 382
-
[96]
[96] Clark J H, Budarin V, Dugmore T, Luque R, Macquarrie D J, Strelko V. Catal Commun, 2008, 9: 1709
-
[97]
[97] Luque R, Budarin V, Clark J H, Macquarrie D J. Green Chem, 2009, 11: 459
-
[98]
[98] Luque R, Clark J H, Yoshida K, Gai P L. Chem Commun, 2009: 5305
-
[99]
[99] White R J, Luque R, Budarin V L, Clark J H, Macquarrie D J. Chem Soc Rev, 2009, 38: 481
-
[100]
[100] Luque R, Clark J H. Catal Commun, 2010, 11: 928
-
[101]
[101] Wang Q, Li H, Chen L Q, Huang X J. Carbon, 2001, 39: 2211
-
[102]
[102] Titirici M M, Thomas A, Antonietti M. Adv Funct Mater, 2007, 17: 1010
-
[103]
[103] Titirici M M, Thomas A, Antonietti M. J Mater Chem, 2007, 17: 3412
-
[104]
[104] Makowski P, Cakan R D, Antonietti M, Goettmann F, Titirici M M. Chem Commun, 2008: 999
-
[105]
[105] Demir-Cakan R, Baccile N, Antonietti M, Titirici M M. Chem Mater, 2009, 21: 484
-
[106]
[106] White R J, Antonietti M, Titirici M M. J Mater Chem, 2009, 19: 8645
-
[107]
[107] Demir-Cakan R, Makowski P, Antonietti M, Goettmann F, Titirici M M. Catal Today, 2010, 150: 115
-
[108]
[108] Zhao L, Bacsik Z, Hedin N, Wei W, Sun Y H, Antonietti M, Titirici M M. ChemSusChem, 2010, 3: 840
-
[109]
[109] Zhao L, Fan L Z, Zhou M Q, Guan H, Qiao S Y, Antonietti M, Titirici M M. Adv Mater, 2010, 22: 5202
-
[110]
[110] White R J, Yoshizawa N, Antonietti M, Titirici M M. Green Chem, 2011, 13: 2428
-
[111]
[111] Tang K, Fu L J, White R J, Yu L H, Titirici M M, Antonietti M, Maier J. Adv Energy Mater, 2012, 2: 873
-
[112]
[112] Tang K, White R J, Mu X K, Titirici M M, van Aken P A, Maier J. ChemSusChem, 2012, 5: 400
-
[113]
[113] Wohlgemuth S A, Vilela F, Titirici M M, Antonietti M. Green Chem, 2012, 14: 741
-
[114]
[114] Wohlgemuth S A, White R J, Willinger M G, Titirici M M, Antonietti M. Green Chem, 2012, 14: 1515
-
[115]
[115] Sevilla M, Yu L H, Fellinger T P, Fuertes A B, Titirici M M. RSC Adv, 2013, 3: 9904
-
[116]
[116] Yu L H, Brun N, Sakaushi K, Eckert J, Titirici M M. Carbon, 2013, 61: 245
-
[117]
[117] Brun N, Sakaushi K, Eckert J, Titirici M M. ACS Sus Chem Eng, 2014, 2: 126
-
[118]
[118] Titirici M M, White R J, Falco C, Sevilla M. Energy Environ Sci, 2012, 5: 6796
-
[119]
[119] Hu B, Wang K, Wu L H, Yu S H, Antonietti M, Titirici M M. Adv Mater, 2010, 22: 813
-
[120]
[120] Funke A, Ziegler F. Biofuels Bioprod Bioref, 2010, 4: 160
-
[121]
[121] Ming J, Liu R X, Liang G F, Cheng H Y, Yu Y C, Zhao F Y. J Mater Chem, 2011, 21: 10929
-
[122]
[122] Qi X H, Guo H X, Li L Y, Smith R L. Chemsuschem, 2012, 5: 2215
-
[123]
[123] Zhang X C, Zhang Z, Wang F, Wang Y H, Song Q, Xu J. J Mol Catal A, 2013, 377: 102
-
[124]
[124] Sun S H, Bai R X, Gu Y L. Chem Eur J, 2014, 20: 549
-
[125]
[125] Su D S, Perathoner S, Centi G. Chem Rev, 2013, 113: 5782
-
[126]
[126] Zhu J, Holmen A, Chen D. ChemCatChem, 2013, 5: 378
-
[127]
[127] Ji J Y, Zhang G H, Chen H Y, Wang S L, Zhang G L, Zhang F B, Fan X B. Chem Sci, 2011, 2: 484
-
[128]
[128] Liu R L, Chen J Z, Huang X, Chen L M, Ma L L, Li X J. Green Chem, 2013, 15: 2895
-
[129]
[129] Tessonnier J-P, Villa A, Majoulet O, Su D S, Schlögl R. Angew Chem Int Ed, 2009, 48: 6543
-
[130]
[130] Villa A, Tessonnier J-P, Majoulet O, Su D S, Schlögl R. Chem Commun, 2009: 4405
-
[131]
[131] Villa A, Tessonnier J-P, Majoulet O, Su D S, Schlögl R. ChemSusChem, 2010, 3: 241
-
[132]
[132] Yuan C F, Chen W F, Yan L F. J Mater Chem, 2012, 22: 7456
-
[133]
[133] Wang A, Li C, Zheng M, Zhang T. In: Hoboken N J Ed. The Role of Green Chemistry in Biomass Processing and Conversion. USA: John Wiley & Sons, Inc., 2012. 313
-
[134]
[134] Wang H J, Zhu L L, Peng S, Peng F, Yu H, Yang J. Renew Energy, 2012, 37: 192
-
[135]
[135] Zhang Z G, Jackson J E, Miller D J. Appl Catal A, 2001, 219: 89
-
[136]
[136] Jang H, Kim S-H, Lee D, Shim S E, Baeck S-H, Kim B S, Chang T S. J Mol Catal A, 2013, 380: 57
-
[137]
[137] Lahr D G, Shanks B H. J Catal, 2005, 232: 386
-
[138]
[138] Maris E P, Davis R J. J Catal, 2007, 249: 328
-
[139]
[139] Li B D, Wang J, Yuan Y Z, Ariga H, Takakusagi S, Asakura K. ACS Catal, 2011, 1: 1521
-
[140]
[140] Wu Z J, Mao Y Z, Wang X X, Zhang M H. Green Chem, 2011, 13: 1311
-
[141]
[141] Sun J, Liu H. Catal Today, 2014, in press
-
[142]
[142] Palkovits R, Tajvidi K, Procelewska J, Rinaldi R, Ruppert A. Green Chem, 2010, 12: 972
-
[143]
[143] Hilgert J, Meine N, Rinaldi R, Schüth F. Energy Environ Sci, 2013, 6: 92
-
[144]
[144] Deng W P, Tan X S, Fang W H, Zhang Q H, Wang Y. Catal Lett, 2009, 133: 167
-
[145]
[145] Ren H, Yu W T, Salciccioli M, Chen Y, Huang Y L, Xiong K, Vlachos D G, Chen J G. ChemSusChem, 2013, 6: 798
-
[146]
[146] Ren H, Chen Y, Huang Y L, Deng W H, Vlachos D G, Chen J G. Green Chem, 2014, 16: 761
-
[147]
[147] Han J X, Duan J Z, Chen P, Lou H, Zheng X M. Adv Synth Catal, 2011, 353: 2577
-
[148]
[148] Han J X, Duan J Z, Chen P, Lou H, Zheng X M, Hong H P. Green Chem, 2011, 13: 2561
-
[149]
[149] Han J X, Duan J Z, Chen P, Lou H, Zheng X M, Hong H P. ChemSusChem, 2012, 5: 727
-
[150]
[150] Gosselink R W, Stellwagen D R, Bitter J H. Angew Chem Int Ed, 2013, 52: 5089
-
[151]
[151] Jongerius A L, Bruijnincx P C A, Weckhuysen B M. Green Chem, 2013, 15: 3049
-
[152]
[152] Jongerius A L, Gosselink R W, Dijkstra J, Bitter J H, Bruijnincx P C A, Weckhuysen B M. ChemCatChem, 2013, 5: 2964
-
[153]
[153] Qin Y, Chen P, Duan J Z, Han J X, Lou H, Zheng X M, Hong H P. RSC Adv, 2013, 3: 17485
-
[154]
[154] Davis S E, Ide M S, Davis R J. Green Chem, 2013, 15: 17
-
[155]
[155] Guo Z, Liu B, Zhang Q H, Deng W P, Wang Y, Yang Y H. Chem Soc Rev, 2014, 43: 3480
-
[156]
[156] Prati L, Villa A, Lupini A R, Veith G M. Phys Chem Chem Phys, 2012, 14: 2969
-
[157]
[157] Gil S, Muñoz L, Sánchez-Silva L, Romero A, Valverde J L. Chem Eng J, 2011, 172: 418
-
[158]
[158] Gil S, Marchena M, Fernández C M, Sánchez-Silva L, Romero A, Valverde J L. Appl Catal A, 2013, 450: 189
-
[159]
[159] Rodrigues E G, Delgado J J, Chen X, Pereira M F R, órfão J J M. Ind Eng Chem Res, 2012, 51: 15884
-
[160]
[160] Tan X S, Deng W P, Liu M, Zhang Q H, Wang Y. Chem Commun, 2009: 7179
-
[161]
[161] Villa A, Schiavoni M, Campisi S, Veith G M, Prati L. ChemSusChem, 2013, 6: 609
-
[162]
[162] Wang D, Villa A, Su D S, Prati L, Schlögl R. ChemCatChem, 2013, 5: 2717
-
[163]
[163] Arrigo R, Wrabetz S, Schuster M E, Wang D, Villa A, Rosenthal D, Girsgdies F, Weinberg G, Prati L, Schlögl R, Su D S. Phys Chem Chem Phys, 2012, 14: 10523
-
[164]
[164] Chizari K, Janowska I, Houllé M, Florea I, Ersen O, Romero T, Bernhardt P, Ledoux M J, Pham-Huu C. Appl Catal A, 2010, 380: 72
-
[165]
[165] Chen P P, Chew L M, Kostka A, Muhler M, Xia W. Catal Sci Technol, 2013, 3: 1964
-
[166]
[166] Chen P R, Yang F K, Kostka A, Xia W. ACS Catal, 2014, 4: 1478
-
[167]
[167] Rinaldi A, Tessonnier J-P, Schuster M E, Blume R, Girgsdies F, Zhang Q, Jacob T, Abd Hamid S B, Su D S, Schlögl R. Angew Chem Int Ed, 2011, 50: 3313
-
[168]
[168] Shao L D, Zhang B S, Zhang W, Teschner D, Girgsdies F, Schlögl R, Su D S. Chem Eur J, 2012, 18: 14962
-
[169]
[169] Lerf A, He H, Forster M, Klinowski J. J Phys Chem B, 1998, 102: 4477
-
[170]
[170] Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, Dékány I. Chem Mater, 2006, 18: 2740
-
[171]
[171] Baccile N, Laurent G, Coelho C, Babonneau F, Zhao L, Titirici M M. J Phys Chem C, 2011, 115: 8976
-
[172]
[172] Engtrakul C, Irurzun V M, Gjersing E L, Holt J M, Larsen B A, Resasco D E, Blackburn J L. J Am Chem Soc, 2012, 134: 4850
-
[173]
[173] Johnson R L, Anderson J M, Shanks B H, Fang X, Hong M, Schmidt-Rohr K. J Magn Reson, 2013, 234: 112
-
[174]
[174] Johnson R L, Schmidt-Rohr K. J Magn Reson, 2014, 239: 44
-
[175]
[175] Florea I, Ersen O, Arenal R, Ihiawakrim D, Messaoudi C, Chizari K, Janowska I, Pham-Huu C. J Am Chem Soc, 2012, 134: 9672
-
[176]
[176] Gómez-Navarro C, Meyer J C, Sundaram R S, Chuvilin A, Kurasch S, Burghard M, Kern K, Kaiser U. Nano Lett, 2010, 10: 1144
-
[177]
[177] Guo J J, Morris J R, Ihm Y, Contescu C I, Gallego N C, Duscher G, Pennycook S J, Chisholm M F. Small, 2012, 8: 3283
-
[178]
[178] Knop‐Gericke A, Kleimenov E, Hävecker M, Blume R, Teschner D, Zafeiratos S, Schlögl R, Bukhtiyarov V I, Kaichev V V, Prosvirin I P, Nizovskii A I, Bluhm H, Barinov A, Dudin P, Kiskinova M. Adv Catal, 2009, 52: 213
-
[179]
[179] Arrigo R, Havecker M, Schlögl R, Su D S. Chem Commun, 2008: 4891
-
[180]
[180] Arrigo R, Hävecker M, Wrabetz S, Blume R, Lerch M, McGregor J, Parrott E P J, Zeitler J A, Gladden L F, Knop-Gericke A, Schlögl R, Su D S. J Am Chem Soc, 2010, 132: 9616
-
[181]
[181] Grunwaldt J-D, Wagner J B, Dunin-Borkowski R E. ChemCatChem, 2013, 5: 62
-
[182]
[182] Zhang B S, Su D S. Small, 2014, 10: 222
-
[183]
[183] Gao W, Mueller J E, Anton J, Jiang Q, Jacob T. Angew Chem Int Ed, 2013, 52: 14237
-
[1]
-
-
-
[1]
Ruiying Liu , Li Zhao , Baishan Liu , Jiayuan Yu , Yujie Wang , Wanqiang Yu , Di Xin , Chaoqiong Fang , Xuchuan Jiang , Riming Hu , Hong Liu , Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332
-
[2]
Heng Yang , Zhijie Zhou , Conghui Tang , Feng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257
-
[3]
Wenjing Xiong , Yulin Xu , Fangzhou Zhao , Baokai Xia , Hongqiang Wang , Wei Liu , Sheng Chen , Yongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738
-
[4]
Wen-Jing Li , Jun-Bo Wang , Yu-Heng Liu , Mo Zhang , Zhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001
-
[5]
Ke Wang , Jia Wu , Shuyi Zheng , Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104
-
[6]
Cheng Guo , Xiaoxiao Zhang , Xiujuan Hong , Yiqiu Hu , Lingna Mao , Kezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867
-
[7]
Sanmei Wang , Yong Zhou , Hengxin Fang , Chunyang Nie , Chang Q Sun , Biao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476
-
[8]
Sanmei Wang , Dengxin Yan , Wenhua Zhang , Liangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611
-
[9]
Caili Yang , Tao Long , Ruotong Li , Chunyang Wu , Yuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675
-
[10]
Baokang Geng , Xiang Chu , Li Liu , Lingling Zhang , Shuaishuai Zhang , Xiao Wang , Shuyan Song , Hongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924
-
[11]
Chaozheng He , Pei Shi , Donglin Pang , Zhanying Zhang , Long Lin , Yingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116
-
[12]
Hanqing Zhang , Xiaoxia Wang , Chen Chen , Xianfeng Yang , Chungli Dong , Yucheng Huang , Xiaoliang Zhao , Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089
-
[13]
Hao-Cong Li , Ming Zhang , Qiyan Lv , Kai Sun , Xiao-Lan Chen , Lingbo Qu , Bing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579
-
[14]
Huipeng Zhao , Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246
-
[15]
Xuan Liu , Qing Li . Tailoring interatomic active sites for highly selective electrocatalytic biomass conversion reaction. Chinese Chemical Letters, 2025, 36(4): 110670-. doi: 10.1016/j.cclet.2024.110670
-
[16]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[17]
Wenhao Feng , Chunli Liu , Zheng Liu , Huan Pang . In-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552
-
[18]
Qiyan Wu , Qing Li . Topologically close-packed intermetallic alloy electrocatalysts for CO2 reduction towards high value-added multi-carbon chemicals. Chinese Chemical Letters, 2025, 36(1): 110384-. doi: 10.1016/j.cclet.2024.110384
-
[19]
Zixuan Guo , Xiaoshuai Han , Chunmei Zhang , Shuijian He , Kunming Liu , Jiapeng Hu , Weisen Yang , Shaoju Jian , Shaohua Jiang , Gaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007
-
[20]
Jun Dong , Senyuan Tan , Sunbin Yang , Yalong Jiang , Ruxing Wang , Jian Ao , Zilun Chen , Chaohai Zhang , Qinyou An , Xiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010
-
[1]
Metrics
- PDF Downloads(176)
- Abstract views(787)
- HTML views(66)