Citation:
Anas Benyounes, Mohamed Kacimi, Mahfoud Ziyad, Philippe Serp. Conversion of isopropyl alcohol over Ru and Pd loaded N-doped carbon nanotubes[J]. Chinese Journal of Catalysis,
;2014, 35(6): 970-978.
doi:
10.1016/S1872-2067(14)60121-2
-
Ru and Pd (2 wt%) loaded on pure and on N-doped carbon nanotubes (N-CNTs) were prepared and tested using the isopropyl alcohol decomposition reaction as probe reaction. The presence of nitrogen functionalities (pyridinic, pyrrolic, and quaternary nitrogen) on the nitrogen doped support induced a higher metal dispersion: Pd/N-CNT (1.8 nm) < Pd/CNT (4.9 nm), and Ru/N-CNT (2.4 nm) < Ru/CNT (3.0 nm). The catalytic activity of the supports was determined first. Isopropyl alcohol conversion produces acetone on CNTs while on N-CNTs it led to both dehydration and dehydrogenation products. At 210℃ and in the presence of air, the isopropyl alcohol conversion was higher on the N-CNTs (25%) than on the CNTs (11%). The Pd loaded catalysts were more active and more selective than the Ru ones. At 115℃, the Pd catalysts were 100% selective towards acetone for a conversion of 100%, whereas the Ru catalysts led to dehydration and dehydrogenation products. The nitrogen doping induced the appearance of redox properties when oxygen is present in the reaction mixture.
-
-
-
[1]
[1] Lauron-Pernot H. Catal Rev-Sci Eng, 2006, 48: 315
-
[2]
[2] Turek W, Krowiak A. Appl Catal A, 2012, 417-418: 102
-
[3]
[3] Gervasini A, Auroux A. J Catal, 1991, 131: 190
-
[4]
[4] Rioux R M, Vannice M A. J Catal, 2005, 233: 147
-
[5]
[5] Moreno-Castilla C, Maldonado-Hódar F J, Rivera-Utrilla J, Rodríguez-Castellón E. Appl Catal A, 1999, 183: 345
-
[6]
[6] Moreno-Castilla C, Carrasco-Marín F, Parejo-Pérez C, López Ramó M V. Carbon, 2001, 39: 869
-
[7]
[7] Bedia J, Rosas J M, Márquez J, Rodríguez-Mirasol J, Cordero T. Carbon, 2009, 47: 286
-
[8]
[8] Carrasco-Marín F, Mueden A, Moreno-Castilla C. J Phys Chem B, 1998, 102: 9239
-
[9]
[9] Al-Daous M A, Manda A A, Hattori H. J Mol Catal A, 2012, 363-364: 512
-
[10]
[10] Ogo S, Onda A, Yanagisawa K. Appl Catal A, 2008, 348: 129
-
[11]
[11] Campelo J M, Garcia A, Herencia J F, Luna D, Marinas J M, Romero A A. J Catal, 1995, 151: 307
-
[12]
[12] Gervasini A, Fenyvesi J, Auroux A. Catal Lett, 1997, 43: 219
-
[13]
[13] Yasu-eda T, Kitamura S, Ikenaga N, Miyake T, Suzuki T. J Mol Catal A, 2010, 323: 7
-
[14]
[14] Mears D E, Boudart M. AIChE J, 1966, 12: 313
-
[15]
[15] Rioux R M, Vannice M A. J Catal, 2003, 216: 362
-
[16]
[16] Pepe F, Angeletti C, De Rossi S, Jacono M L. J Catal, 1985, 91: 69
-
[17]
[17] Alvarez-Merino M A, Carrasco-Marín F, Fierro J L G, Moreno-Castilla C. J Catal, 2000, 192: 363
-
[18]
[18] Moreno-Castilla C, Pérez-Cadenas A F, Maldonado-Hódar F J, Carrasco-Marín F, Fierro J L G. Carbon, 2003, 41: 1157
-
[19]
[19] Zawadzki J, Wiśniewski M, Weber J, Heintz O, Azambre B. Carbon, 2001, 39: 187
-
[20]
[20] Han Y, Shen J, Chen Y. Appl Catal A, 2001, 205: 79
-
[21]
[21] Wang H, Maiyalagan T, Wang X. ACS Catal, 2012, 2: 781
-
[22]
[22] Liu G, Li X, Lee J-W, Popov, B N. Catal Sci Technol, 2011, 1: 207
-
[23]
[23] Boehm, H P, Catalytic Properties of Nitrogen-Containing Carbons. In: Serp P, Figueiredo J L eds. Carbon Materials for Catalysis. New York: John Wiley & Sons, 2008. 219
-
[24]
[24] Koós A A, Dowling M D, Jurkschat K, Crossley A, Grobert N. Carbon, 2009, 47:30
-
[25]
[25] Florea I, Ersen O, Arenal R, Ihiawakrim D, Messaoudi C, Chizari K, Janowska I, Pham-Huu C. J Am Chem Soc, 2012, 134: 9672
-
[26]
[26] O'Byrne J P, Li Z, Jones S L T, Fleming P G, Larsson J A, Morris M A, Holmes J D. ChemPhysChem, 2011, 12: 2995
-
[27]
[27] Yadav R M, Dobal P S, Shripathi T, Katiyar R S, Srivastava O N. Nanoscale Res Lett, 2009, 4: 197
-
[28]
[28] He M, Zhou S, Zhang J, Liu Z, Robinson C. J Phys Chem B, 2005, 109: 9275
-
[29]
[29] Geng D, Yang S, Zhang Y, Yang J, Liu J, Li R, Sham T-K, Sun X, Ye S, Knights S. Appl Surf Sci, 2011, 257: 9193
-
[30]
[30] Dresselhaus M S, Dresselhaus G, Saito R, Jorio A. Phys Rep, 2005, 409: 47
-
[31]
[31] Bulusheva L G, Okotrub A V, Kinloch I A, Asanov I P, Kurenya A G, Kudashov A G, Chen X, Song H. Phys Status Solidi B, 2008, 245: 1971
-
[32]
[32] Sharifi T, Nitze F, Barzegar H R, Tai C-W, Mazurkiewicz M, Malolepszy A, Stobinski L, Wågberg T. Carbon, 2012, 50: 3535
-
[33]
[33] Mabena L F, Sinha Ray S, Mhlanga S D, Coville N J. Appl Nanosci, 2011, 1: 67
-
[34]
[34] Vinayan B P, Ramaprabhu S. Nanoscale, 2013, 5: 5109
-
[35]
[35] Chen Y, Wang J, Liu H, Banis M N, Li R, Sun X, Sham T K, Ye S, Knights S. J Phys Chem C, 2011, 115: 3769
-
[36]
[36] Abate S, Freni M, Arrigo R, Schuster M E, Perathoner S, Centi G. ChemCatChem, 2013, 5: 1899
-
[37]
[37] Nakada K, Ishii A. Solid State Commun, 2011, 151: 13
-
[38]
[38] Trang Nguyen T, Serp P. ChemCatChem, 2013, 5: 3595
-
[39]
[39] Bedia J, Rosas J M, Vera D, Rodriguez-Mirasol J, Cordero T. Catal Today, 2010, 158: 89
-
[40]
[40] Jasinska E, Krzyzynska B, Kozlowski M. Catal Lett, 2008, 125: 145
-
[41]
[41] Ferens A R, Weinstein R D, Giuliano R, Hull J A. Carbon, 2012, 50: 192
-
[42]
[42] Fuente E, Menéndez J A, Suárez D, Montes-Morán M A. Langmuir, 2003, 19: 3505
-
[43]
[43] Montes-Morán M A, Suárez D, Menéndez J A, Fuente E. Carbon, 2004, 42: 1219
-
[44]
[44] Shafeeyan M S, Daud W M A W, Houshmand A, Shamiri A. J Anal Appl Pyrolysis, 2010, 89: 143
-
[45]
[45] Strelko Jr V, J Malik D, Streat M. Carbon, 2002, 40:95
-
[46]
[46] Wiame H, Cellier C, Grange P. J Catal, 2000, 190: 406
-
[47]
[47] Busca G, Lorenzelli V, Porcile G, Baraton M I, Quintard P, Marchand R. Mater Chem Phys, 1986, 14: 123
-
[48]
[48] Lednor P W, De Ruiter R. J Chem Soc, Chem Commun,1991: 1625
-
[49]
[49] Massinon A, Odriozola J A, Bastians P, Conanec R, Marchand R, Laurent Y, Grange P. Appl Catal A, 2013, 137: 9
-
[50]
[50] Grange P, Bastians P, Conanec R, Marchand R, Laurent Y. Appl Catal A,1994, 114: L191
-
[51]
[51] Shimoyama I, Wu G, SekiguchiT, BabaY. J Electron Spectrosc, 2001, 114-116: 841
-
[52]
[52] Balon M, Carmona M C, Munoz M A, Hidalgo J. Tetrahedron, 1989, 45: 7501
-
[53]
[53] Kundu S, Xia W, Busser W, Becker M, Schmidt D A, Havenith M, Muhler M. Phys Chem Chem Phys, 2010, 12: 4351
-
[54]
[54] Povarova E I, Pylinina A I, Mikhalenko I I. Russ J Phys Chem A, 2012, 86: 935
-
[55]
[55] Kulkarni D, Wachs I E. Appl Catal A, 2002, 237: 121
-
[56]
[56] Oishi T, Yamaguchi K, MizunoN. Top Catal, 2010, 53: 479
-
[57]
[57] Machado B F, Oubenali M, Axet M R, Trang Nguyen T T, Tunckol M, Girleanu M, Ersen O, Gerber I C, Serp P. J Catal, 2014, 309: 185
-
[58]
[58] Pérez-Cadenas A F, Moreno-Castilla C, Maldonado-HódarF J, Fierro J L G. J Catal, 2003, 217: 30
-
[59]
[59] Rouimi M, Ziyad M, Leglise J. Phosphorus ResBull, 1999, 10: 418
-
[60]
[60] Meira D M, Cortez G G, Monteiro W R, Rodrigues J A J. Brazi J Chem Eng, 2006, 23: 351
-
[61]
[61] New Solid Acids and Bases Their Catalytic Properties. Edited by Tanabe K, Misono M, Ono Y, Hattori H. Stud Surf Sci Catal, 1989, 51: 1
-
[1]
-
-
-
[1]
Hailong He , Wenbing Wang , Wenmin Pang , Chen Zou , Dan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534
-
[2]
Xiaohui Fu , Yanping Zhang , Juan Liao , Zhen-Hua Wang , Yong You , Jian-Qiang Zhao , Mingqiang Zhou , Wei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688
-
[3]
Xinyu Hou , Xuelian Yu , Meng Liu , Hengxing Peng , Lijuan Wu , Libing Liao , Guocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845
-
[4]
Gongcheng Ma , Qihang Ding , Yuding Zhang , Yue Wang , Jingjing Xiang , Mingle Li , Qi Zhao , Saipeng Huang , Ping Gong , Jong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293
-
[5]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[6]
Tianyi Yang , Fangxi Su , Dehuan Shi , Shenghong Zhong , Yalin Guo , Zhaohui Liu , Jianfeng Huang . Efficient propane dehydrogenation catalyzed by Ru nanoparticles anchored on a porous nitrogen-doped carbon matrix. Chinese Chemical Letters, 2025, 36(2): 110444-. doi: 10.1016/j.cclet.2024.110444
-
[7]
Yan Wang , Jiaqi Zhang , Xiaofeng Wu , Sibo Wang , Masakazu Anpo , Yuanxing Fang . Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts. Chinese Chemical Letters, 2025, 36(2): 110439-. doi: 10.1016/j.cclet.2024.110439
-
[8]
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
-
[9]
Zhong-Hui Sun , Yu-Qi Zhang , Zhen-Yi Gu , Dong-Yang Qu , Hong-Yu Guan , Xing-Long Wu . CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(1): 109590-. doi: 10.1016/j.cclet.2024.109590
-
[10]
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199
-
[11]
Jiahao Xie , Jin Liu , Bin Liu , Xin Meng , Zhuang Cai , Xiaoqin Xu , Cheng Wang , Shijie You , Jinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236
-
[12]
Xiujuan Wang , Yijie Wang , Luyun Cui , Wenqiang Gao , Xiao Li , Hong Liu , Weijia Zhou , Jingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031
-
[13]
Bing Shen , Tongwei Yuan , Wenshuang Zhang , Yang Chen , Jiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490
-
[14]
Jichun Li , Zhengren Wang , Yu Deng , Hongxiu Yu , Yonghui Deng , Xiaowei Cheng , Kaiping Yuan . Construction of mesoporous silica-implanted tungsten oxides for selective acetone gas sensing. Chinese Chemical Letters, 2024, 35(11): 110111-. doi: 10.1016/j.cclet.2024.110111
-
[15]
Jiangping Chen , Hongju Ren , Kai Wu , Huihuang Fang , Chongqi Chen , Li Lin , Yu Luo , Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236
-
[16]
Xin Li , Wanting Fu , Ruiqing Guan , Yue Yuan , Qinmei Zhong , Gang Yao , Sheng-Tao Yang , Liandong Jing , Song Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625
-
[17]
Zhen-Zhen Dong , Jin-Hao Zhang , Lin Zhu , Xiao-Zhong Fan , Zhen-Guo Liu , Yi-Bo Yan , Long Kong . Attenuating reductive decomposition of fluorinated electrolytes for high-voltage lithium metal batteries. Chinese Chemical Letters, 2025, 36(4): 109773-. doi: 10.1016/j.cclet.2024.109773
-
[18]
Qiyan Wu , Ruixin Zhou , Zhangyi Yao , Tanyuan Wang , Qing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416
-
[19]
Hao WANG , Kun TANG , Jiangyang SHAO , Kezhi WANG , Yuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176
-
[20]
Chun-Yun Ding , Ru-Yuan Zhang , Yu-Wu Zhong , Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2024.100393
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(473)
- HTML views(53)