Citation: Anas Benyounes, Mohamed Kacimi, Mahfoud Ziyad, Philippe Serp. Conversion of isopropyl alcohol over Ru and Pd loaded N-doped carbon nanotubes[J]. Chinese Journal of Catalysis, ;2014, 35(6): 970-978. doi: 10.1016/S1872-2067(14)60121-2 shu

Conversion of isopropyl alcohol over Ru and Pd loaded N-doped carbon nanotubes

  • Corresponding author: Mohamed Kacimi, 
  • Received Date: 31 March 2014
    Available Online: 25 April 2014

  • Ru and Pd (2 wt%) loaded on pure and on N-doped carbon nanotubes (N-CNTs) were prepared and tested using the isopropyl alcohol decomposition reaction as probe reaction. The presence of nitrogen functionalities (pyridinic, pyrrolic, and quaternary nitrogen) on the nitrogen doped support induced a higher metal dispersion: Pd/N-CNT (1.8 nm) < Pd/CNT (4.9 nm), and Ru/N-CNT (2.4 nm) < Ru/CNT (3.0 nm). The catalytic activity of the supports was determined first. Isopropyl alcohol conversion produces acetone on CNTs while on N-CNTs it led to both dehydration and dehydrogenation products. At 210℃ and in the presence of air, the isopropyl alcohol conversion was higher on the N-CNTs (25%) than on the CNTs (11%). The Pd loaded catalysts were more active and more selective than the Ru ones. At 115℃, the Pd catalysts were 100% selective towards acetone for a conversion of 100%, whereas the Ru catalysts led to dehydration and dehydrogenation products. The nitrogen doping induced the appearance of redox properties when oxygen is present in the reaction mixture.
  • 加载中
    1. [1]

      [1] Lauron-Pernot H. Catal Rev-Sci Eng, 2006, 48: 315

    2. [2]

      [2] Turek W, Krowiak A. Appl Catal A, 2012, 417-418: 102

    3. [3]

      [3] Gervasini A, Auroux A. J Catal, 1991, 131: 190

    4. [4]

      [4] Rioux R M, Vannice M A. J Catal, 2005, 233: 147

    5. [5]

      [5] Moreno-Castilla C, Maldonado-Hódar F J, Rivera-Utrilla J, Rodríguez-Castellón E. Appl Catal A, 1999, 183: 345

    6. [6]

      [6] Moreno-Castilla C, Carrasco-Marín F, Parejo-Pérez C, López Ramó M V. Carbon, 2001, 39: 869

    7. [7]

      [7] Bedia J, Rosas J M, Márquez J, Rodríguez-Mirasol J, Cordero T. Carbon, 2009, 47: 286

    8. [8]

      [8] Carrasco-Marín F, Mueden A, Moreno-Castilla C. J Phys Chem B, 1998, 102: 9239

    9. [9]

      [9] Al-Daous M A, Manda A A, Hattori H. J Mol Catal A, 2012, 363-364: 512

    10. [10]

      [10] Ogo S, Onda A, Yanagisawa K. Appl Catal A, 2008, 348: 129

    11. [11]

      [11] Campelo J M, Garcia A, Herencia J F, Luna D, Marinas J M, Romero A A. J Catal, 1995, 151: 307

    12. [12]

      [12] Gervasini A, Fenyvesi J, Auroux A. Catal Lett, 1997, 43: 219

    13. [13]

      [13] Yasu-eda T, Kitamura S, Ikenaga N, Miyake T, Suzuki T. J Mol Catal A, 2010, 323: 7

    14. [14]

      [14] Mears D E, Boudart M. AIChE J, 1966, 12: 313

    15. [15]

      [15] Rioux R M, Vannice M A. J Catal, 2003, 216: 362

    16. [16]

      [16] Pepe F, Angeletti C, De Rossi S, Jacono M L. J Catal, 1985, 91: 69

    17. [17]

      [17] Alvarez-Merino M A, Carrasco-Marín F, Fierro J L G, Moreno-Castilla C. J Catal, 2000, 192: 363

    18. [18]

      [18] Moreno-Castilla C, Pérez-Cadenas A F, Maldonado-Hódar F J, Carrasco-Marín F, Fierro J L G. Carbon, 2003, 41: 1157

    19. [19]

      [19] Zawadzki J, Wiśniewski M, Weber J, Heintz O, Azambre B. Carbon, 2001, 39: 187

    20. [20]

      [20] Han Y, Shen J, Chen Y. Appl Catal A, 2001, 205: 79

    21. [21]

      [21] Wang H, Maiyalagan T, Wang X. ACS Catal, 2012, 2: 781

    22. [22]

      [22] Liu G, Li X, Lee J-W, Popov, B N. Catal Sci Technol, 2011, 1: 207

    23. [23]

      [23] Boehm, H P, Catalytic Properties of Nitrogen-Containing Carbons. In: Serp P, Figueiredo J L eds. Carbon Materials for Catalysis. New York: John Wiley & Sons, 2008. 219

    24. [24]

      [24] Koós A A, Dowling M D, Jurkschat K, Crossley A, Grobert N. Carbon, 2009, 47:30

    25. [25]

      [25] Florea I, Ersen O, Arenal R, Ihiawakrim D, Messaoudi C, Chizari K, Janowska I, Pham-Huu C. J Am Chem Soc, 2012, 134: 9672

    26. [26]

      [26] O'Byrne J P, Li Z, Jones S L T, Fleming P G, Larsson J A, Morris M A, Holmes J D. ChemPhysChem, 2011, 12: 2995

    27. [27]

      [27] Yadav R M, Dobal P S, Shripathi T, Katiyar R S, Srivastava O N. Nanoscale Res Lett, 2009, 4: 197

    28. [28]

      [28] He M, Zhou S, Zhang J, Liu Z, Robinson C. J Phys Chem B, 2005, 109: 9275

    29. [29]

      [29] Geng D, Yang S, Zhang Y, Yang J, Liu J, Li R, Sham T-K, Sun X, Ye S, Knights S. Appl Surf Sci, 2011, 257: 9193

    30. [30]

      [30] Dresselhaus M S, Dresselhaus G, Saito R, Jorio A. Phys Rep, 2005, 409: 47

    31. [31]

      [31] Bulusheva L G, Okotrub A V, Kinloch I A, Asanov I P, Kurenya A G, Kudashov A G, Chen X, Song H. Phys Status Solidi B, 2008, 245: 1971

    32. [32]

      [32] Sharifi T, Nitze F, Barzegar H R, Tai C-W, Mazurkiewicz M, Malolepszy A, Stobinski L, Wågberg T. Carbon, 2012, 50: 3535

    33. [33]

      [33] Mabena L F, Sinha Ray S, Mhlanga S D, Coville N J. Appl Nanosci, 2011, 1: 67

    34. [34]

      [34] Vinayan B P, Ramaprabhu S. Nanoscale, 2013, 5: 5109

    35. [35]

      [35] Chen Y, Wang J, Liu H, Banis M N, Li R, Sun X, Sham T K, Ye S, Knights S. J Phys Chem C, 2011, 115: 3769

    36. [36]

      [36] Abate S, Freni M, Arrigo R, Schuster M E, Perathoner S, Centi G. ChemCatChem, 2013, 5: 1899

    37. [37]

      [37] Nakada K, Ishii A. Solid State Commun, 2011, 151: 13

    38. [38]

      [38] Trang Nguyen T, Serp P. ChemCatChem, 2013, 5: 3595

    39. [39]

      [39] Bedia J, Rosas J M, Vera D, Rodriguez-Mirasol J, Cordero T. Catal Today, 2010, 158: 89

    40. [40]

      [40] Jasinska E, Krzyzynska B, Kozlowski M. Catal Lett, 2008, 125: 145

    41. [41]

      [41] Ferens A R, Weinstein R D, Giuliano R, Hull J A. Carbon, 2012, 50: 192

    42. [42]

      [42] Fuente E, Menéndez J A, Suárez D, Montes-Morán M A. Langmuir, 2003, 19: 3505

    43. [43]

      [43] Montes-Morán M A, Suárez D, Menéndez J A, Fuente E. Carbon, 2004, 42: 1219

    44. [44]

      [44] Shafeeyan M S, Daud W M A W, Houshmand A, Shamiri A. J Anal Appl Pyrolysis, 2010, 89: 143

    45. [45]

      [45] Strelko Jr V, J Malik D, Streat M. Carbon, 2002, 40:95

    46. [46]

      [46] Wiame H, Cellier C, Grange P. J Catal, 2000, 190: 406

    47. [47]

      [47] Busca G, Lorenzelli V, Porcile G, Baraton M I, Quintard P, Marchand R. Mater Chem Phys, 1986, 14: 123

    48. [48]

      [48] Lednor P W, De Ruiter R. J Chem Soc, Chem Commun,1991: 1625

    49. [49]

      [49] Massinon A, Odriozola J A, Bastians P, Conanec R, Marchand R, Laurent Y, Grange P. Appl Catal A, 2013, 137: 9

    50. [50]

      [50] Grange P, Bastians P, Conanec R, Marchand R, Laurent Y. Appl Catal A,1994, 114: L191

    51. [51]

      [51] Shimoyama I, Wu G, SekiguchiT, BabaY. J Electron Spectrosc, 2001, 114-116: 841

    52. [52]

      [52] Balon M, Carmona M C, Munoz M A, Hidalgo J. Tetrahedron, 1989, 45: 7501

    53. [53]

      [53] Kundu S, Xia W, Busser W, Becker M, Schmidt D A, Havenith M, Muhler M. Phys Chem Chem Phys, 2010, 12: 4351

    54. [54]

      [54] Povarova E I, Pylinina A I, Mikhalenko I I. Russ J Phys Chem A, 2012, 86: 935

    55. [55]

      [55] Kulkarni D, Wachs I E. Appl Catal A, 2002, 237: 121

    56. [56]

      [56] Oishi T, Yamaguchi K, MizunoN. Top Catal, 2010, 53: 479

    57. [57]

      [57] Machado B F, Oubenali M, Axet M R, Trang Nguyen T T, Tunckol M, Girleanu M, Ersen O, Gerber I C, Serp P. J Catal, 2014, 309: 185

    58. [58]

      [58] Pérez-Cadenas A F, Moreno-Castilla C, Maldonado-HódarF J, Fierro J L G. J Catal, 2003, 217: 30

    59. [59]

      [59] Rouimi M, Ziyad M, Leglise J. Phosphorus ResBull, 1999, 10: 418

    60. [60]

      [60] Meira D M, Cortez G G, Monteiro W R, Rodrigues J A J. Brazi J Chem Eng, 2006, 23: 351

    61. [61]

      [61] New Solid Acids and Bases Their Catalytic Properties. Edited by Tanabe K, Misono M, Ono Y, Hattori H. Stud Surf Sci Catal, 1989, 51: 1

  • 加载中
    1. [1]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    2. [2]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    3. [3]

      Xinyu HouXuelian YuMeng LiuHengxing PengLijuan WuLibing LiaoGuocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845

    4. [4]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    5. [5]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    6. [6]

      Tianyi YangFangxi SuDehuan ShiShenghong ZhongYalin GuoZhaohui LiuJianfeng Huang . Efficient propane dehydrogenation catalyzed by Ru nanoparticles anchored on a porous nitrogen-doped carbon matrix. Chinese Chemical Letters, 2025, 36(2): 110444-. doi: 10.1016/j.cclet.2024.110444

    7. [7]

      Yan WangJiaqi ZhangXiaofeng WuSibo WangMasakazu AnpoYuanxing Fang . Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts. Chinese Chemical Letters, 2025, 36(2): 110439-. doi: 10.1016/j.cclet.2024.110439

    8. [8]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    9. [9]

      Zhong-Hui SunYu-Qi ZhangZhen-Yi GuDong-Yang QuHong-Yu GuanXing-Long Wu . CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(1): 109590-. doi: 10.1016/j.cclet.2024.109590

    10. [10]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    11. [11]

      Jiahao XieJin LiuBin LiuXin MengZhuang CaiXiaoqin XuCheng WangShijie YouJinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236

    12. [12]

      Xiujuan WangYijie WangLuyun CuiWenqiang GaoXiao LiHong LiuWeijia ZhouJingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031

    13. [13]

      Bing ShenTongwei YuanWenshuang ZhangYang ChenJiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490

    14. [14]

      Jichun LiZhengren WangYu DengHongxiu YuYonghui DengXiaowei ChengKaiping Yuan . Construction of mesoporous silica-implanted tungsten oxides for selective acetone gas sensing. Chinese Chemical Letters, 2024, 35(11): 110111-. doi: 10.1016/j.cclet.2024.110111

    15. [15]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    16. [16]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    17. [17]

      Zhen-Zhen DongJin-Hao ZhangLin ZhuXiao-Zhong FanZhen-Guo LiuYi-Bo YanLong Kong . Attenuating reductive decomposition of fluorinated electrolytes for high-voltage lithium metal batteries. Chinese Chemical Letters, 2025, 36(4): 109773-. doi: 10.1016/j.cclet.2024.109773

    18. [18]

      Qiyan WuRuixin ZhouZhangyi YaoTanyuan WangQing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416

    19. [19]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    20. [20]

      Chun-Yun Ding Ru-Yuan Zhang Yu-Wu Zhong Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2024.100393

Metrics
  • PDF Downloads(0)
  • Abstract views(473)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return