Citation: Huazhang Liu. Ammonia synthesis catalyst 100 years:Practice, enlightenment and challenge[J]. Chinese Journal of Catalysis, ;2014, 35(10): 1619-1640. doi: 10.1016/S1872-2067(14)60118-2 shu

Ammonia synthesis catalyst 100 years:Practice, enlightenment and challenge

  • Corresponding author: Huazhang Liu, 
  • Received Date: 19 March 2014
    Available Online: 23 April 2014

  • Ammonia synthesis catalyst found by Haber-Bosch achieves its history of 100 years. The current understanding and enlightenment from foundation and development of ammonia synthesis catalyst are reviewed, and its future and facing new challenge remained today are expected. Catalytic ammonia synthesis technology has played a central role in the development of the chemical industry during the 20th century. During 100 years, ammonia synthesis catalyst has come through diversified seedtime such as Fe3O4-based iron catalysts, Fe1-xO-based iron catalysts, ruthenium-based catalysts, and discovery of a Co-Mo-N system. Often new techniques, methods, and theories of catalysis have initially been developed and applied in connection with studies of this system. Similarly, new discoveries in the field of ammonia synthesis have been extended to other fields of catalysis. There is no other practically relevant reaction that leads to such a close interconnection between theory, model catalysis, and experiment as the high-pressure synthesis of ammonia. Catalytic synthesis ammonia reaction is yet a perfect model system for academic research in the field of heterogeneous catalysis. Understanding the mechanism and the translation of the knowledge into technical perfection has become a fundamental criterion for scientific development in catalysis research. The never-ending story has not ended yet. In addition to questions about the elementary steps of the reaction and the importance of the real structure and subnitrides for the catalyst efficiency, as well as the wide-open question about new catalyst materials, there are also different challenges thrown down by theory for the experimentalist in the prediction of a biomimetic ammonia-synthesis path at room temperature and atmospheric pressure including electrocatalysis, photocatalysis and biomimetic nitrogen fixation.
  • 加载中
    1. [1]

      [1] Timm B. In: Proceedings of 8th International Congress on Catalysis. Vol. 1. Weinheim: Verlag Chemie, 1984. I-7

    2. [2]

      [2] Hu X D. In: The 15th National Conference on Catalysis of China. Guangzhou: South China University of Technology (胡效东. 见: 第十五届全国催化学术会议. 广州: 华南理工大学), 2010

    3. [3]

      [3] Zhejiang Institute of Chemical Engineering. Chem Fertilizer Catal (浙江化工学院. 化肥与催化), 1979, 1: 1

    4. [4]

      [4] Xiang D H, Liu H Y. Handbook of Chemical Fertilizer Catalysts. Beijing: Chem Ind Press (向德辉, 刘惠云主编. 化肥催化剂实用手册. 北京: 化学工业出版社), 1992. 226

    5. [5]

      [5] Wei K M, Wang R, Chen Z Z, Ye B H, Zheng Q, Yu X J. Chem Fertilizer Ind (魏可镁, 王榕, 陈振宙, 叶炳火, 郑起, 俞秀金. 化肥工业), 1985, (3): 10

    6. [6]

      [6] Wei K M, Yu X J, Wang R, Lin J X, Wei M D. Ind Catal (魏可镁, 俞秀金, 王榕, 林建新, 魏明灯. 工业催化), 1995, (3): 14

    7. [7]

      [7] Lin W M, Huang C R, Gan S F, Cao B L, Li Z P, Zhong H B. Guangdong Chem Ind (林维明, 黄传荣, 甘世凡, 曹柏林, 黎智萍, 钟慧斌. 广东化工), 1984, (2): 6

    8. [8]

      [8] Figurski M J, Arabczyk W, Lendzion-Bielun Z, Kaleńczuk R J, Lenart S. Appl Catal A, 2003, 247: 9

    9. [9]

      [9] Pelka R, Kielbasa K, Arabczyk W. Cent Eur J Chem, 2011, 9: 240

    10. [10]

      [10] Lendzion-Bielun Z, Jedrzejewski R, Ekiert E, Arabczyk W. Appl Catal A, 2011, 400: 48

    11. [11]

      [11] Yu X J, Lin B Y, Lin J X, Wang R, Wei K M. J Rare Earths (俞秀金, 林炳裕, 林建新, 王榕, 魏可镁. 稀土学报), 2008, 26: 711

    12. [12]

      [12] Zheng Y F, Liu H Z, Liu Z J, Li X N. J Solid State Chem, 2009, 182: 2385

    13. [13]

      [13] Schlögl R. Angew Chem Int Ed, 2003, 42: 2004

    14. [14]

      [14] Pernicone N, Ferrero F, Rossetti I, Forni L, Canton P, Riello P, Fagherazzi G, Signoretto M, Pinna F. Appl Catal A, 2003, 251: 121

    15. [15]

      [15] Shen J. Chemical Fertilizer Engineering Series: Ammonia Synthesis. Beijing: Chem Ind Press (沈浚主编. 化肥工学丛书—合成氨. 北京: 化学工业出版社), 2001. 49

    16. [16]

      [16] Liu H Z, Li X N. Sci China (Ser B), 1995, 38: 529

    17. [17]

      [17] Liu H Z, Li X N, Hu Z N. Appl Catal A, 1996, 142: 209

    18. [18]

      [18] Liu H Z, Li X N. Ind Eng Chem Res, 1997, 36: 335

    19. [19]

      [19] Liu H Z, Li X N. Stud Surf Sci Catal, 2000, 130: 2207

    20. [20]

      [20] Guan S, Liu H Z. Ind Eng Chem Res, 2000, 39: 2891

    21. [21]

      [21] Liu H Z, Liu C B, Li X N, Cen Y Q. Ind Eng Chem Res, 2003, 42: 1347

    22. [22]

      [22] Lendzion-Bielun Z, Arabczyk W, Figurski M. Appl Catal A, 2002, 227: 255

    23. [23]

      [23] Pernicone N. CATTECH, 2003, 7: 196

    24. [24]

      [24] Liu H Z. Ammonia Synthesis Catalysts: Innovation and Practice. Singapore: World Sci Publishing Co. Ltd., 2013

    25. [25]

      [25] Ozaki A, Aika K. In: Andersen J R, Boudart M eds. Catalysis, Science and Technology. Heidelberg: Springer, 1985. 88

    26. [26]

      [26] Bielawa H, Hinrichsen O, Birkner A, Muhler M. Angew Chem Int Ed, 2001, 40: 1061

    27. [27]

      [27] Sudo M, Ichikawa M, Soma M, Onishi T, Tamaru K. J Phys Chem, 1969, 73: 1174

    28. [28]

      [28] Aika K, Hori H, Ozaki A. J Catal, 1972, 27: 424

    29. [29]

      [29] Wan X N, Zhu H, Xia W Q, Liu H Z. Chin J Catal (王晓南, 朱虹, 夏伟琴, 刘化章. 催化学报), 2000, 21: 276

    30. [30]

      [30] Liang C H, Wei Z B, Xin Q, Li C. Appl Catal A, 2001, 208: 193

    31. [31]

      [31] Wan L H, Lin Y J, Jiang J, Chen H B, Lin Y Z, Chen S Z, Liao D W. J Xiamen University (Natur Sci) (王丽华, 林贻基, 江剑, 陈鸿博, 林银钟, 陈守正, 廖代伟. 厦门大学学报(自然科学版)), 1999, 38: 148

    32. [32]

      [32] Liu G Z, Zheng X L, Xu J X, Wei K M. Ind Catal (刘广臻, 郑晓玲, 许交兴, 魏可镁. 工业催化), 2004, 12(6): 44

    33. [33]

      [33] Forni L, Molinari D, Rossetti I, Pernicone N. Appl Catal A, 1999, 185: 269

    34. [34]

      [34] Rossetti I, Pernicone N, Forni L. Appl Catal A, 2001, 208: 271

    35. [35]

      [35] Brown D E, Edmonds T, Joyner R W, McCarroll J J, Tennison S R. Catal Lett, 2014, 144: 545

    36. [36]

      [36] Jacobsen C J H, Dahl S, Clausen B S, Bahn S, Logadottir A, Nörskov J K. J Am Chem Soc, 2001, 123: 8404

    37. [37]

      [37] Kojima R, Aika K. Appl Catal A, 2001, 219: 141

    38. [38]

      [38] Kojima R, Aika K. Appl Catal A, 2001, 219: 157

    39. [39]

      [39] Kojima R, Aika K. Appl Catal A, 2001, 218: 121

    40. [40]

      [40] Kojima R, Aika K. Appl Catal A, 2001, 215: 149

    41. [41]

      [41] Kojima R, Aika K. Chem Lett, 2000: 514

    42. [42]

      [42] Kojima R, Aika K. Appl Catal A, 2001, 209: 317

    43. [43]

      [43] Kojima R, Aika K. Chem Lett, 2000: 912

    44. [44]

      [44] Ertl G. J Vac Sci Technol A, 1983, 1: 1247

    45. [45]

      [45] Strongin D R, Carrazza J, Bare S R, Somorjai G A. J Catal, 1987, 103: 213

    46. [46]

      [46] Logadottir A, Rod T H, Norskov J K, Hammer B, Dahl S, Jacobsen C J H. J Catal, 2001, 197: 229

    47. [47]

      [47] Jacobsen C J H. Chem Commun, 2000: 1057

    48. [48]

      [48] Thomas J M, Zamaraev K I. Angew Chem Int Ed, 1994, 33: 308

    49. [49]

      [49] Zheng Q F. [PhD Dissertation]. Hangzhou: Zhejiang Univ Technol (郑启富. [博士学位论文]. 杭州: 浙江工业大学), 2012

    50. [50]

      [50] Hecht D. Drug Develop Res, 2011, 72: 53

    51. [51]

      [51] Horiguchi J, Kobayashi S, Yamazaki Y, Nakanishi T, Itabashi D, Omata K, Yamada M. Appl Catal A, 2010, 377: 9

    52. [52]

      [52] Huang K, Zhan X L, Chen F Q, Lü D W. Chem Eng Sci, 2003, 58: 81

    53. [53]

      [53] Aparicio L M, Dumesic J A. Top Catal, 1994, 1: 233

    54. [54]

      [54] Boudart M. Top Catal, 1994, 1: 405

    55. [55]

      [55] Somorjai G A, Materer N. Top Catal, 1994, 1: 215

    56. [56]

      [56] Tamaru K. In: Jennings J R ed. Catalytic Ammonia Synthesis. New York: Plenum Press, 1991. Chapter 1

    57. [57]

      [57] Rosenthal D. Phys Status Solid A, 2011, 208: 1217

    58. [58]

      [58] Nielsen A. An Investigation on Promoted Iron Catalysts for the Synthesis of Ammonia. 3rd Ed. Copenhagen: Jul Gjellerup’s Forlag, 1968

    59. [59]

      [59] Anderson J R, Boudart M. Catalysis, Science and Technology. Berlin: Springer-Verlag, 1983

    60. [60]

      [60] Jennings J R. Catalytic Ammonia Synthesis, Fundamental and Practice. New York: Plenum Press, 1991

    61. [61]

      [61] Aika K, Christiansen L. Ammonia Catalysis and Manufacture. Berlin: Springer-Verlag, 1995

    62. [62]

      [62] Topsöe H, Boudart M, Norskov J K. Ammonia Synthesis and Beyond. Amsterdam: Baltzer Sci Publishers, 1994

    63. [63]

      [63] Jacobsen C J H, Dahl S, Hansen P L, Törnqvist E, Jensen L, Topsøe H, Prip D V, Møenshaug P B, Chorkendorff B. J Mol Catal A, 2000, 163: 19

    64. [64]

      [64] Boudart M, Djega-Mariadassou G. Kinetics of Heterogeneous Catalytic Reactions. Princeton: Priceton Univ Press, 1984

    65. [65]

      [65] Alstrup I, Chorkendorff I, Ullmann S. J Catal, 1997, 168: 217

    66. [66]

      [66] Jing Y, Arons D J S. Resource, Energy, Environment, Society—Scientific and Engineering Principles for Circular Economy. Beijing: Chem Ind Press (金涌, 阿伦斯. 资源·能源·环境·社会—循环经济科学工程原理. 北京: 化学工业出版社), 2009

    67. [67]

      [67] SchlJgl R. In: Ertl G, KnJzinger H, Weitkamp J eds. Handbook of Heterogeneous Catalysis. Weinheim: Wiley-VCH, 1997. 1697

    68. [68]

      [68] Holme B, Skaugset P, Tafto J. Appl Catal A, 1997, 162: 149

    69. [69]

      [69] Jedynak A, Kowalczyk Z, Szmigiel D, Zielinski J. Pol J Chem, 2001, 75: 1801

    70. [70]

      [70] Guan S, Lin H Z. Ind Eng Chem Res, 2000, 39: 2891

    71. [71]

      [71] Jacobsen C J H, Jiang J Z, Morup S, Clausen B S, Topsoe H. Catal Lett, 1999, 61: 115

    72. [72]

      [72] Yunusov S M, Kalyuzhnaya E S, Mahapatra H, Puri V K, Likholobov V A, Shur V B. J Mol Catal A, 1999, 139: 219

    73. [73]

      [73] Liu H Z, Li X N, Shzyki S, Ohnishi R, Ichikawa M. J Chem Ind Eng (China) (刘化章, 李小年, 铃木聪雄, 大西隆一郎, 市川胜. 化工学报), 2000, 51: 462

    74. [74]

      [74] Arabczyk W, Narkiewicz U, Moszynski D. Langmuir, 1999, 15: 5785

    75. [75]

      [75] Arabczyk W, Narkiewicz U, Kalucki K. Vacuum, 1994, 45: 267

    76. [76]

      [76] Silverman D C, Boudart M. J Catal, 1982, 77: 208

    77. [77]

      [77] Holme B, Taft J. J Catal, 1995, 152: 243

    78. [78]

      [78] Arabczyk W, Narkiewicz U, Moszynski D. Appl Catal A, 1999, 182: 379

    79. [79]

      [79] Herzog B, Herein D, SchliSgl R. Appl Catal A, 1996, 141: 71

    80. [80]

      [80] Boudart M. Top Catal, 2000, 13: 147

    81. [81]

      [81] Yu Z H, Zhu B C, Shen C D et al. Process Analysis for Large Synthetic Ammonia Plant. Beijing: China Petrochem Press (于遵宏, 朱炳辰, 沈才大等. 大型合成氨厂工艺过程分析. 北京: 中国石化出版社), 1993

    82. [82]

      [82] Liu H Z. Chem Ind Eng Progr (刘化章. 化工进展), 2013, 32: 1995

    83. [83]

      [83] Leigh J. Chem Br, 2001, 37: 23

    84. [84]

      [84] Dybkjaer I. In: Nielsen A ed. Ammonia, Catalysis and Manufacture. Heidelberg: Springer, 1995. 199

    85. [85]

      [85] Mittasch A. Z Elektrochem Amgew Phys Chem, 1930, 36: 569

    86. [86]

      [86] Mittasch A. Adv Catal, 1950, 2: 81

    87. [87]

      [87] Marnellos G, Stoukides M. Science, 1998, 282: 98

    88. [88]

      [88] Liu H Z. Chem Ind Eng Progr (刘化章. 化工进展), 2011, 30: 1147

    89. [89]

      [89] Mizushima T, Matsumoto K, Ohkita H, Kakuta N. Plasma Chem Plasma Process, 2007, 27: 1

    90. [90]

      [90] Yuan J H, Zhong X J, Tan S Y. J Chem Ind Eng (原金海, 仲学军, 谭世语. 化学工业与工程), 2008, 29(4): 7

    91. [91]

      [91] Carrasco E, Jiménez-Redondo M, Tanarro I, Herrero V J. Phys Chem Chem Phys, 2011, 13: 19561

    92. [92]

      [92] Kubota Y, Koga K, Ohno M, Hara T. Plasma Fusion Res, 2010, 5: 042

    93. [93]

      [93] Yahya N, Puspitasari P, Noordin N H. Defect Diffusion Forum, 2013, 334-335: 329

    94. [94]

      [94] Liu H Z, Hu Z N, Li X N, Cen Y Q, Fu G P. J Chem Ind Eng (China) (刘化章, 胡樟能, 李小年, 岑亚青, 傅冠平. 化工学报), 2001, 52: 1063

    95. [95]

      [95] Por E, Haase G, Citri O, Kosloff R, Asscher M. Chem Phys Lett, 1991, 188: 553

    96. [96]

      [96] Katz G, Kosloff R. J Chem Phys, 1995, 103: 9475

    97. [97]

      [97] Vandervell H D, Vaugh K C. Chem Phys Lett, 1990, 171: 462

    98. [98]

      [98] Ertl G. Catal Rev Sci Eng, 1980, 21: 201

    99. [99]

      [99] Ertl G. Angew Chem Int Ed, 2008, 47: 3524

    100. [100]

      [100] Rappe A K, Goddard W A. In: Truhlar D G ed. Potential Energy Surfaces and Dynamics Calculations. New York: Plenum, 1981. 661

    101. [101]

      [101] Mortensen J J, Hansen L B, Hammer B, Nørskov J K. J Catal, 1999, 182: 479

    102. [102]

      [102] Shen H B, Liao Y Y, Zhang H B, Tsai K R. Chin Chem Lett, 1993, 4: 457

    103. [103]

      [103] Zhang H B, Schrader G L. J Catal, 1986, 99: 461

    104. [104]

      [104] Spencer M S. Catal Lett, 1992, 13: 45

    105. [105]

      [105] Seiyama T, Tanabe K. Proceedings of the 7th International Congress on Catalysis. Nitrogen Fixation. Tokyo, 1980

    106. [106]

      [106] Bowker W. Top Catal, 1994, 1: 265

    107. [107]

      [107] Sun J, Xu M, Liao D W. Comput Appl Chem (孙杰, 许猛, 廖代伟. 计算机与应用化学), 2004, 21: 245

    108. [108]

      [108] Hei M J, Cheng H B, Lin Y J, Hong Q, Lin Y Z, Yi J, Liao D W, Tsai K R. J Xiamen Univ (Natur Sci) (黑美军, 陈鸿博, 林贻基, 洪琦, 林银钟, 易军, 廖代伟, 蔡启瑞. 厦门大学学报(自然科学版)), 1997, 36: 879

    109. [109]

      [109] Lin J D, Liao D W, Zhang H B, Wan H L, Tsai K R. Chin J Catal (林敬东, 廖代伟, 张鸿斌, 万惠霖, 蔡启瑞. 催化学报), 2010, 31: 153

    110. [110]

      [110] Enomoto S, Horiuti J. J Res Inst Catal (Hokkaido Univ), 1953, 2: 87

    111. [111]

      [111] Enomoto S, Horiuti J. J Res Inst Catal (Hokkaido Univ), 1954, 3: 185

    112. [112]

      [112] Tanaka K. J Res Inst Catal (Hokkaido Univ), 1966, 13: 119

    113. [113]

      [113] Liu H Z. Ammonia Synthesis Catalysts: Practice and Theory. Beijing: Chem Ind Press (刘化章. 氨合成催化剂—实践与理论.北京: 化学工业出版社), 2007

    114. [114]

      [114] Rod T H, Logadottir A, Norskov J K. J Chem Phys, 2000, 112: 5343

    115. [115]

      [115] Zhang S Y. Chemistry Online (张树永. 化学通报), 2001, c01005

    116. [116]

      [116] Skulason E, Bligaard T, Gudmundsdottir S, Studt F, Rossmeisl J, Abild-Pedersen F, Vegge T, Jonsson H, Norskov J K. Phys Chem Chem Phys, 2012, 14: 1235

    117. [117]

      [117] Cui Y C, Liu R Q. J Xinjiang Univ (崔银仓,刘瑞泉. 新疆大学学报(自然科学版)), 2010, 27: 473

    118. [118]

      [118] Neurock M. In: 15th International Congress on Catalysis. Munich, Germany, 2012

    119. [119]

      [119] Murakami T, Nohira T, Ogata Y H, Ito Y. Electrochem Solid State Lett, 2005, 8: E1

    120. [120]

      [120] Yiokari C G, Pitselis G E, Polydoros D G, Katsaounis A D, Vayenas C G. J Phys Chem A, 2000, 104: 10600

    121. [121]

      [121] Malato S. In: 15th International Congress on Catalysis. Munich, Germany, 2012

    122. [122]

      [122] Deisenhofer J, Epp O, Miki K, Huber R, Michel H. Nature, 1986, 318: 618

    123. [123]

      [123] Michel H, Epp O, Deisenhofer J. EMBO J, 1986, 5: 2445

    124. [124]

      [124] Herrmann J. In: 15th International Congress on Catalysis. Munich, Germany, 2012

    125. [125]

      [125] Maeda K. In: 15th International Congress on Catalysis. Munich, Germany, 2012

    126. [126]

      [126] Xu H B, Yang W S, Guo Q, Dai D X, Chen M D, Yang X M. J Am Chem Soc, 2013, 135: 10206

    127. [127]

      [127] Yamauchi M, Abe R, Tsukuda T, Kato K, Takata M. J Am Chem Soc, 2011, 133: 1150

    128. [128]

      [128] Noda Y, Lee B, Domen K, Kondo J N. Chem Mater, 2008, 20: 5361

    129. [129]

      [129] Rao N N, Dube S, Manjubala, Natarajan P. Appl Catal B, 1994, 5: 33

    130. [130]

      [130] Ileperuma O A, Tennakone K, Dissanayake W D D P. Appl Catal, 1990, 62: L1

    131. [131]

      [131] Schrauzer G N, Guth T D. J Am Chem Soc, 1977, 99: 7189

    132. [132]

      [132] Yamauchi M, Abe R. EP Patent 2 474 356 A1. 2012

    133. [133]

      [133] Domen K. In: 15th International Congress on Catalysis. Munich, Germany, 2012

    134. [134]

      [134] Li C. In: 15th International Congress on Catalysis. Munich, Germany, 2012

    135. [135]

      [135] Periana R. In: 15th International Congress on Catalysis. Munich, Germany, 2012

    136. [136]

      [136] Group of Nitrogen Fixation at Jilin University. Progress in Chemical Simulation of Biological Nitrogen Fixation. Beijing: Sci Press (吉林大学化学系固氮小组等编译. 化学模拟生物固氮进展. 北京: 科学出版社), 1973

    137. [137]

      [137] Research Group of Nitrogen Fixation at Fujian Institute of the Structure of Matter, CAS. Progress in Chemical Simulation of Biological Nitrogen Fixation. Beijing: Sci Press (中国科学院福建物质结构研究所固氮研究小组编译. 化学模拟生物固氮进展. 北京: 科学出版社), 1976

    138. [138]

      [138] Zhou T J, Wan H L, Wang N Q, Liao D W, Tsai K R. J Xiamen Univ (Natur Sci) (周泰锦, 万惠霖, 王南钦, 廖代伟, 蔡启瑞. 厦门大学学报(自然科学版)), 1987, 26: 195

    139. [139]

      [139] Wang Y S, Li J L. Progr Natur Sci (王友绍, 李季伦. 自然科学进展), 2000, 10: 481

    140. [140]

      [140] Kim J, Rees D C. Nature, 1992, 360: 553

    141. [141]

      [141] Kim J, Rees D C. Science, 1992, 257: 1677

    142. [142]

      [142] Howard J B, Rees D C. Proceedings of the National Academy of Sciences of the United States of America. 2006, 103: 17088

    143. [143]

      [143] Rees D C, Tezcan F A, Haynes C A, Walton M Y, Andrade S, Einsle O, Howard J B. Philosophical Transactions of the Royal Society A, 2005, 363: 971

    144. [144]

      [144] Hamilton T L, Lange R K, Boyd E S, Peters J W. Environ Microbiology, 2011, 13: 2204

    145. [145]

      [145] Cheng Q. J Integrative Plant Biology, 2008, 50: 786

    146. [146]

      [146] Tuczek F. Nachrichten aus der Chem, 2006, 54: 1190

    147. [147]

      [147] de Matos Nogueira E, Olivares F L, Japiassu J C, Vilar C, Vinagre F, Baldani J I, Silva Hemerly A. Plant Sci, 2005, 169: 819

    148. [148]

      [148] Studt F, Tuczek F. Angew Chem Int Ed, 2005, 44: 5639

    149. [149]

      [149] Dixon R, Kahn D. Nature Rev Microbiol, 2004, 2: 621

    150. [150]

      [150] Gehring C, Vlek P L G. Basic Appl Ecol, 2004, 5: 567

    151. [151]

      [151] Vinther F P. Plant Soil, 1998, 203: 207

    152. [152]

      [152] Reetz M T. In: 15th International Congress on Catalysis. Munich, Germany, 2012

    153. [153]

      [153] Wang T F. Chem Ind Eng Progr (王庭富. 化工进展), 2001, (8): 6

    154. [154]

      [154] Wu H Y. Chem Eng Design (伍宏业. 化工设计), 2002, 12(4): 3

  • 加载中
    1. [1]

      Youjun Fan Dandan Cai Wei Chen Jianhua Qiu . Exploration and Practice of Ideological and Political Education Reform in Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 119-124. doi: 10.3866/PKU.DXHX202310123

    2. [2]

      Jie Li Rong Lai Xianfang Xu Houjin Li Hongyan Chen Fang Zhu . Exploration and Practice in the Construction of the National Demonstration Center for Experimental Chemistry Education: A Case Study of Sun Yat-sen University. University Chemistry, 2024, 39(7): 223-229. doi: 10.12461/PKU.DXHX202406054

    3. [3]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    4. [4]

      Qiaowei Li Huadong Wang Junli Hou . Exploration and Reflection on Graduate Curriculum Development under the New Paradigm of Chemistry Advancement. University Chemistry, 2024, 39(6): 50-54. doi: 10.3866/PKU.DXHX202401044

    5. [5]

      Anyang Li Xiaohui Ning Zhihui Ren Wei Sun Yan Li Bin Cui . Support and Guarantee for Talent Cultivation and Discipline Development: Exploration and Practice of the Construction of National Demonstration Center for Experimental Chemistry Education in Northwest University. University Chemistry, 2024, 39(7): 140-146. doi: 10.12461/PKU.DXHX202405052

    6. [6]

      Xiaofei Zhou Yu-Qing Cao Feng Zhu Li Qi Linhai Liu Ni Yan Zhiqiang Zhu . Missions and Challenges of Instrumental Analysis Course in the New Era. University Chemistry, 2024, 39(6): 174-180. doi: 10.3866/PKU.DXHX202310058

    7. [7]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    8. [8]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    9. [9]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    10. [10]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    11. [11]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    15. [15]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    16. [16]

      Haorui Gu Ning Li Zhanxiang Liu Xufeng Lin . Construction and Development of Chemistry Experimental Teaching Center under the Background of the “101 Plan”. University Chemistry, 2024, 39(7): 110-115. doi: 10.12461/PKU.DXHX202405022

    17. [17]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    18. [18]

      Zhenli Sun Ning Wang Kexin Lin Qin Dai Yufei Zhou Dandan Cao Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095

    19. [19]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    20. [20]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

Metrics
  • PDF Downloads(0)
  • Abstract views(833)
  • HTML views(171)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return