Citation:
Huazhang Liu. Ammonia synthesis catalyst 100 years:Practice, enlightenment and challenge[J]. Chinese Journal of Catalysis,
;2014, 35(10): 1619-1640.
doi:
10.1016/S1872-2067(14)60118-2
-
Ammonia synthesis catalyst found by Haber-Bosch achieves its history of 100 years. The current understanding and enlightenment from foundation and development of ammonia synthesis catalyst are reviewed, and its future and facing new challenge remained today are expected. Catalytic ammonia synthesis technology has played a central role in the development of the chemical industry during the 20th century. During 100 years, ammonia synthesis catalyst has come through diversified seedtime such as Fe3O4-based iron catalysts, Fe1-xO-based iron catalysts, ruthenium-based catalysts, and discovery of a Co-Mo-N system. Often new techniques, methods, and theories of catalysis have initially been developed and applied in connection with studies of this system. Similarly, new discoveries in the field of ammonia synthesis have been extended to other fields of catalysis. There is no other practically relevant reaction that leads to such a close interconnection between theory, model catalysis, and experiment as the high-pressure synthesis of ammonia. Catalytic synthesis ammonia reaction is yet a perfect model system for academic research in the field of heterogeneous catalysis. Understanding the mechanism and the translation of the knowledge into technical perfection has become a fundamental criterion for scientific development in catalysis research. The never-ending story has not ended yet. In addition to questions about the elementary steps of the reaction and the importance of the real structure and subnitrides for the catalyst efficiency, as well as the wide-open question about new catalyst materials, there are also different challenges thrown down by theory for the experimentalist in the prediction of a biomimetic ammonia-synthesis path at room temperature and atmospheric pressure including electrocatalysis, photocatalysis and biomimetic nitrogen fixation.
-
Keywords:
- Ammonia synthesis catalyst,
- Discovery,
- Development,
- Challenge,
- Practice,
- Enlightenment
-
-
-
[1]
[1] Timm B. In: Proceedings of 8th International Congress on Catalysis. Vol. 1. Weinheim: Verlag Chemie, 1984. I-7
-
[2]
[2] Hu X D. In: The 15th National Conference on Catalysis of China. Guangzhou: South China University of Technology (胡效东. 见: 第十五届全国催化学术会议. 广州: 华南理工大学), 2010
-
[3]
[3] Zhejiang Institute of Chemical Engineering. Chem Fertilizer Catal (浙江化工学院. 化肥与催化), 1979, 1: 1
-
[4]
[4] Xiang D H, Liu H Y. Handbook of Chemical Fertilizer Catalysts. Beijing: Chem Ind Press (向德辉, 刘惠云主编. 化肥催化剂实用手册. 北京: 化学工业出版社), 1992. 226
-
[5]
[5] Wei K M, Wang R, Chen Z Z, Ye B H, Zheng Q, Yu X J. Chem Fertilizer Ind (魏可镁, 王榕, 陈振宙, 叶炳火, 郑起, 俞秀金. 化肥工业), 1985, (3): 10
-
[6]
[6] Wei K M, Yu X J, Wang R, Lin J X, Wei M D. Ind Catal (魏可镁, 俞秀金, 王榕, 林建新, 魏明灯. 工业催化), 1995, (3): 14
-
[7]
[7] Lin W M, Huang C R, Gan S F, Cao B L, Li Z P, Zhong H B. Guangdong Chem Ind (林维明, 黄传荣, 甘世凡, 曹柏林, 黎智萍, 钟慧斌. 广东化工), 1984, (2): 6
-
[8]
[8] Figurski M J, Arabczyk W, Lendzion-Bielun Z, Kaleńczuk R J, Lenart S. Appl Catal A, 2003, 247: 9
-
[9]
[9] Pelka R, Kielbasa K, Arabczyk W. Cent Eur J Chem, 2011, 9: 240
-
[10]
[10] Lendzion-Bielun Z, Jedrzejewski R, Ekiert E, Arabczyk W. Appl Catal A, 2011, 400: 48
-
[11]
[11] Yu X J, Lin B Y, Lin J X, Wang R, Wei K M. J Rare Earths (俞秀金, 林炳裕, 林建新, 王榕, 魏可镁. 稀土学报), 2008, 26: 711
-
[12]
[12] Zheng Y F, Liu H Z, Liu Z J, Li X N. J Solid State Chem, 2009, 182: 2385
-
[13]
[13] Schlögl R. Angew Chem Int Ed, 2003, 42: 2004
-
[14]
[14] Pernicone N, Ferrero F, Rossetti I, Forni L, Canton P, Riello P, Fagherazzi G, Signoretto M, Pinna F. Appl Catal A, 2003, 251: 121
-
[15]
[15] Shen J. Chemical Fertilizer Engineering Series: Ammonia Synthesis. Beijing: Chem Ind Press (沈浚主编. 化肥工学丛书—合成氨. 北京: 化学工业出版社), 2001. 49
-
[16]
[16] Liu H Z, Li X N. Sci China (Ser B), 1995, 38: 529
-
[17]
[17] Liu H Z, Li X N, Hu Z N. Appl Catal A, 1996, 142: 209
-
[18]
[18] Liu H Z, Li X N. Ind Eng Chem Res, 1997, 36: 335
-
[19]
[19] Liu H Z, Li X N. Stud Surf Sci Catal, 2000, 130: 2207
-
[20]
[20] Guan S, Liu H Z. Ind Eng Chem Res, 2000, 39: 2891
-
[21]
[21] Liu H Z, Liu C B, Li X N, Cen Y Q. Ind Eng Chem Res, 2003, 42: 1347
-
[22]
[22] Lendzion-Bielun Z, Arabczyk W, Figurski M. Appl Catal A, 2002, 227: 255
-
[23]
[23] Pernicone N. CATTECH, 2003, 7: 196
-
[24]
[24] Liu H Z. Ammonia Synthesis Catalysts: Innovation and Practice. Singapore: World Sci Publishing Co. Ltd., 2013
-
[25]
[25] Ozaki A, Aika K. In: Andersen J R, Boudart M eds. Catalysis, Science and Technology. Heidelberg: Springer, 1985. 88
-
[26]
[26] Bielawa H, Hinrichsen O, Birkner A, Muhler M. Angew Chem Int Ed, 2001, 40: 1061
-
[27]
[27] Sudo M, Ichikawa M, Soma M, Onishi T, Tamaru K. J Phys Chem, 1969, 73: 1174
-
[28]
[28] Aika K, Hori H, Ozaki A. J Catal, 1972, 27: 424
-
[29]
[29] Wan X N, Zhu H, Xia W Q, Liu H Z. Chin J Catal (王晓南, 朱虹, 夏伟琴, 刘化章. 催化学报), 2000, 21: 276
-
[30]
[30] Liang C H, Wei Z B, Xin Q, Li C. Appl Catal A, 2001, 208: 193
-
[31]
[31] Wan L H, Lin Y J, Jiang J, Chen H B, Lin Y Z, Chen S Z, Liao D W. J Xiamen University (Natur Sci) (王丽华, 林贻基, 江剑, 陈鸿博, 林银钟, 陈守正, 廖代伟. 厦门大学学报(自然科学版)), 1999, 38: 148
-
[32]
[32] Liu G Z, Zheng X L, Xu J X, Wei K M. Ind Catal (刘广臻, 郑晓玲, 许交兴, 魏可镁. 工业催化), 2004, 12(6): 44
-
[33]
[33] Forni L, Molinari D, Rossetti I, Pernicone N. Appl Catal A, 1999, 185: 269
-
[34]
[34] Rossetti I, Pernicone N, Forni L. Appl Catal A, 2001, 208: 271
-
[35]
[35] Brown D E, Edmonds T, Joyner R W, McCarroll J J, Tennison S R. Catal Lett, 2014, 144: 545
-
[36]
[36] Jacobsen C J H, Dahl S, Clausen B S, Bahn S, Logadottir A, Nörskov J K. J Am Chem Soc, 2001, 123: 8404
-
[37]
[37] Kojima R, Aika K. Appl Catal A, 2001, 219: 141
-
[38]
[38] Kojima R, Aika K. Appl Catal A, 2001, 219: 157
-
[39]
[39] Kojima R, Aika K. Appl Catal A, 2001, 218: 121
-
[40]
[40] Kojima R, Aika K. Appl Catal A, 2001, 215: 149
-
[41]
[41] Kojima R, Aika K. Chem Lett, 2000: 514
-
[42]
[42] Kojima R, Aika K. Appl Catal A, 2001, 209: 317
-
[43]
[43] Kojima R, Aika K. Chem Lett, 2000: 912
-
[44]
[44] Ertl G. J Vac Sci Technol A, 1983, 1: 1247
-
[45]
[45] Strongin D R, Carrazza J, Bare S R, Somorjai G A. J Catal, 1987, 103: 213
-
[46]
[46] Logadottir A, Rod T H, Norskov J K, Hammer B, Dahl S, Jacobsen C J H. J Catal, 2001, 197: 229
-
[47]
[47] Jacobsen C J H. Chem Commun, 2000: 1057
-
[48]
[48] Thomas J M, Zamaraev K I. Angew Chem Int Ed, 1994, 33: 308
-
[49]
[49] Zheng Q F. [PhD Dissertation]. Hangzhou: Zhejiang Univ Technol (郑启富. [博士学位论文]. 杭州: 浙江工业大学), 2012
-
[50]
[50] Hecht D. Drug Develop Res, 2011, 72: 53
-
[51]
[51] Horiguchi J, Kobayashi S, Yamazaki Y, Nakanishi T, Itabashi D, Omata K, Yamada M. Appl Catal A, 2010, 377: 9
-
[52]
[52] Huang K, Zhan X L, Chen F Q, Lü D W. Chem Eng Sci, 2003, 58: 81
-
[53]
[53] Aparicio L M, Dumesic J A. Top Catal, 1994, 1: 233
-
[54]
[54] Boudart M. Top Catal, 1994, 1: 405
-
[55]
[55] Somorjai G A, Materer N. Top Catal, 1994, 1: 215
-
[56]
[56] Tamaru K. In: Jennings J R ed. Catalytic Ammonia Synthesis. New York: Plenum Press, 1991. Chapter 1
-
[57]
[57] Rosenthal D. Phys Status Solid A, 2011, 208: 1217
-
[58]
[58] Nielsen A. An Investigation on Promoted Iron Catalysts for the Synthesis of Ammonia. 3rd Ed. Copenhagen: Jul Gjellerup’s Forlag, 1968
-
[59]
[59] Anderson J R, Boudart M. Catalysis, Science and Technology. Berlin: Springer-Verlag, 1983
-
[60]
[60] Jennings J R. Catalytic Ammonia Synthesis, Fundamental and Practice. New York: Plenum Press, 1991
-
[61]
[61] Aika K, Christiansen L. Ammonia Catalysis and Manufacture. Berlin: Springer-Verlag, 1995
-
[62]
[62] Topsöe H, Boudart M, Norskov J K. Ammonia Synthesis and Beyond. Amsterdam: Baltzer Sci Publishers, 1994
-
[63]
[63] Jacobsen C J H, Dahl S, Hansen P L, Törnqvist E, Jensen L, Topsøe H, Prip D V, Møenshaug P B, Chorkendorff B. J Mol Catal A, 2000, 163: 19
-
[64]
[64] Boudart M, Djega-Mariadassou G. Kinetics of Heterogeneous Catalytic Reactions. Princeton: Priceton Univ Press, 1984
-
[65]
[65] Alstrup I, Chorkendorff I, Ullmann S. J Catal, 1997, 168: 217
-
[66]
[66] Jing Y, Arons D J S. Resource, Energy, Environment, Society—Scientific and Engineering Principles for Circular Economy. Beijing: Chem Ind Press (金涌, 阿伦斯. 资源·能源·环境·社会—循环经济科学工程原理. 北京: 化学工业出版社), 2009
-
[67]
[67] SchlJgl R. In: Ertl G, KnJzinger H, Weitkamp J eds. Handbook of Heterogeneous Catalysis. Weinheim: Wiley-VCH, 1997. 1697
-
[68]
[68] Holme B, Skaugset P, Tafto J. Appl Catal A, 1997, 162: 149
-
[69]
[69] Jedynak A, Kowalczyk Z, Szmigiel D, Zielinski J. Pol J Chem, 2001, 75: 1801
-
[70]
[70] Guan S, Lin H Z. Ind Eng Chem Res, 2000, 39: 2891
-
[71]
[71] Jacobsen C J H, Jiang J Z, Morup S, Clausen B S, Topsoe H. Catal Lett, 1999, 61: 115
-
[72]
[72] Yunusov S M, Kalyuzhnaya E S, Mahapatra H, Puri V K, Likholobov V A, Shur V B. J Mol Catal A, 1999, 139: 219
-
[73]
[73] Liu H Z, Li X N, Shzyki S, Ohnishi R, Ichikawa M. J Chem Ind Eng (China) (刘化章, 李小年, 铃木聪雄, 大西隆一郎, 市川胜. 化工学报), 2000, 51: 462
-
[74]
[74] Arabczyk W, Narkiewicz U, Moszynski D. Langmuir, 1999, 15: 5785
-
[75]
[75] Arabczyk W, Narkiewicz U, Kalucki K. Vacuum, 1994, 45: 267
-
[76]
[76] Silverman D C, Boudart M. J Catal, 1982, 77: 208
-
[77]
[77] Holme B, Taft J. J Catal, 1995, 152: 243
-
[78]
[78] Arabczyk W, Narkiewicz U, Moszynski D. Appl Catal A, 1999, 182: 379
-
[79]
[79] Herzog B, Herein D, SchliSgl R. Appl Catal A, 1996, 141: 71
-
[80]
[80] Boudart M. Top Catal, 2000, 13: 147
-
[81]
[81] Yu Z H, Zhu B C, Shen C D et al. Process Analysis for Large Synthetic Ammonia Plant. Beijing: China Petrochem Press (于遵宏, 朱炳辰, 沈才大等. 大型合成氨厂工艺过程分析. 北京: 中国石化出版社), 1993
-
[82]
[82] Liu H Z. Chem Ind Eng Progr (刘化章. 化工进展), 2013, 32: 1995
-
[83]
[83] Leigh J. Chem Br, 2001, 37: 23
-
[84]
[84] Dybkjaer I. In: Nielsen A ed. Ammonia, Catalysis and Manufacture. Heidelberg: Springer, 1995. 199
-
[85]
[85] Mittasch A. Z Elektrochem Amgew Phys Chem, 1930, 36: 569
-
[86]
[86] Mittasch A. Adv Catal, 1950, 2: 81
-
[87]
[87] Marnellos G, Stoukides M. Science, 1998, 282: 98
-
[88]
[88] Liu H Z. Chem Ind Eng Progr (刘化章. 化工进展), 2011, 30: 1147
-
[89]
[89] Mizushima T, Matsumoto K, Ohkita H, Kakuta N. Plasma Chem Plasma Process, 2007, 27: 1
-
[90]
[90] Yuan J H, Zhong X J, Tan S Y. J Chem Ind Eng (原金海, 仲学军, 谭世语. 化学工业与工程), 2008, 29(4): 7
-
[91]
[91] Carrasco E, Jiménez-Redondo M, Tanarro I, Herrero V J. Phys Chem Chem Phys, 2011, 13: 19561
-
[92]
[92] Kubota Y, Koga K, Ohno M, Hara T. Plasma Fusion Res, 2010, 5: 042
-
[93]
[93] Yahya N, Puspitasari P, Noordin N H. Defect Diffusion Forum, 2013, 334-335: 329
-
[94]
[94] Liu H Z, Hu Z N, Li X N, Cen Y Q, Fu G P. J Chem Ind Eng (China) (刘化章, 胡樟能, 李小年, 岑亚青, 傅冠平. 化工学报), 2001, 52: 1063
-
[95]
[95] Por E, Haase G, Citri O, Kosloff R, Asscher M. Chem Phys Lett, 1991, 188: 553
-
[96]
[96] Katz G, Kosloff R. J Chem Phys, 1995, 103: 9475
-
[97]
[97] Vandervell H D, Vaugh K C. Chem Phys Lett, 1990, 171: 462
-
[98]
[98] Ertl G. Catal Rev Sci Eng, 1980, 21: 201
-
[99]
[99] Ertl G. Angew Chem Int Ed, 2008, 47: 3524
-
[100]
[100] Rappe A K, Goddard W A. In: Truhlar D G ed. Potential Energy Surfaces and Dynamics Calculations. New York: Plenum, 1981. 661
-
[101]
[101] Mortensen J J, Hansen L B, Hammer B, Nørskov J K. J Catal, 1999, 182: 479
-
[102]
[102] Shen H B, Liao Y Y, Zhang H B, Tsai K R. Chin Chem Lett, 1993, 4: 457
-
[103]
[103] Zhang H B, Schrader G L. J Catal, 1986, 99: 461
-
[104]
[104] Spencer M S. Catal Lett, 1992, 13: 45
-
[105]
[105] Seiyama T, Tanabe K. Proceedings of the 7th International Congress on Catalysis. Nitrogen Fixation. Tokyo, 1980
-
[106]
[106] Bowker W. Top Catal, 1994, 1: 265
-
[107]
[107] Sun J, Xu M, Liao D W. Comput Appl Chem (孙杰, 许猛, 廖代伟. 计算机与应用化学), 2004, 21: 245
-
[108]
[108] Hei M J, Cheng H B, Lin Y J, Hong Q, Lin Y Z, Yi J, Liao D W, Tsai K R. J Xiamen Univ (Natur Sci) (黑美军, 陈鸿博, 林贻基, 洪琦, 林银钟, 易军, 廖代伟, 蔡启瑞. 厦门大学学报(自然科学版)), 1997, 36: 879
-
[109]
[109] Lin J D, Liao D W, Zhang H B, Wan H L, Tsai K R. Chin J Catal (林敬东, 廖代伟, 张鸿斌, 万惠霖, 蔡启瑞. 催化学报), 2010, 31: 153
-
[110]
[110] Enomoto S, Horiuti J. J Res Inst Catal (Hokkaido Univ), 1953, 2: 87
-
[111]
[111] Enomoto S, Horiuti J. J Res Inst Catal (Hokkaido Univ), 1954, 3: 185
-
[112]
[112] Tanaka K. J Res Inst Catal (Hokkaido Univ), 1966, 13: 119
-
[113]
[113] Liu H Z. Ammonia Synthesis Catalysts: Practice and Theory. Beijing: Chem Ind Press (刘化章. 氨合成催化剂—实践与理论.北京: 化学工业出版社), 2007
-
[114]
[114] Rod T H, Logadottir A, Norskov J K. J Chem Phys, 2000, 112: 5343
-
[115]
[115] Zhang S Y. Chemistry Online (张树永. 化学通报), 2001, c01005
-
[116]
[116] Skulason E, Bligaard T, Gudmundsdottir S, Studt F, Rossmeisl J, Abild-Pedersen F, Vegge T, Jonsson H, Norskov J K. Phys Chem Chem Phys, 2012, 14: 1235
-
[117]
[117] Cui Y C, Liu R Q. J Xinjiang Univ (崔银仓,刘瑞泉. 新疆大学学报(自然科学版)), 2010, 27: 473
-
[118]
[118] Neurock M. In: 15th International Congress on Catalysis. Munich, Germany, 2012
-
[119]
[119] Murakami T, Nohira T, Ogata Y H, Ito Y. Electrochem Solid State Lett, 2005, 8: E1
-
[120]
[120] Yiokari C G, Pitselis G E, Polydoros D G, Katsaounis A D, Vayenas C G. J Phys Chem A, 2000, 104: 10600
-
[121]
[121] Malato S. In: 15th International Congress on Catalysis. Munich, Germany, 2012
-
[122]
[122] Deisenhofer J, Epp O, Miki K, Huber R, Michel H. Nature, 1986, 318: 618
-
[123]
[123] Michel H, Epp O, Deisenhofer J. EMBO J, 1986, 5: 2445
-
[124]
[124] Herrmann J. In: 15th International Congress on Catalysis. Munich, Germany, 2012
-
[125]
[125] Maeda K. In: 15th International Congress on Catalysis. Munich, Germany, 2012
-
[126]
[126] Xu H B, Yang W S, Guo Q, Dai D X, Chen M D, Yang X M. J Am Chem Soc, 2013, 135: 10206
-
[127]
[127] Yamauchi M, Abe R, Tsukuda T, Kato K, Takata M. J Am Chem Soc, 2011, 133: 1150
-
[128]
[128] Noda Y, Lee B, Domen K, Kondo J N. Chem Mater, 2008, 20: 5361
-
[129]
[129] Rao N N, Dube S, Manjubala, Natarajan P. Appl Catal B, 1994, 5: 33
-
[130]
[130] Ileperuma O A, Tennakone K, Dissanayake W D D P. Appl Catal, 1990, 62: L1
-
[131]
[131] Schrauzer G N, Guth T D. J Am Chem Soc, 1977, 99: 7189
-
[132]
[132] Yamauchi M, Abe R. EP Patent 2 474 356 A1. 2012
-
[133]
[133] Domen K. In: 15th International Congress on Catalysis. Munich, Germany, 2012
-
[134]
[134] Li C. In: 15th International Congress on Catalysis. Munich, Germany, 2012
-
[135]
[135] Periana R. In: 15th International Congress on Catalysis. Munich, Germany, 2012
-
[136]
[136] Group of Nitrogen Fixation at Jilin University. Progress in Chemical Simulation of Biological Nitrogen Fixation. Beijing: Sci Press (吉林大学化学系固氮小组等编译. 化学模拟生物固氮进展. 北京: 科学出版社), 1973
-
[137]
[137] Research Group of Nitrogen Fixation at Fujian Institute of the Structure of Matter, CAS. Progress in Chemical Simulation of Biological Nitrogen Fixation. Beijing: Sci Press (中国科学院福建物质结构研究所固氮研究小组编译. 化学模拟生物固氮进展. 北京: 科学出版社), 1976
-
[138]
[138] Zhou T J, Wan H L, Wang N Q, Liao D W, Tsai K R. J Xiamen Univ (Natur Sci) (周泰锦, 万惠霖, 王南钦, 廖代伟, 蔡启瑞. 厦门大学学报(自然科学版)), 1987, 26: 195
-
[139]
[139] Wang Y S, Li J L. Progr Natur Sci (王友绍, 李季伦. 自然科学进展), 2000, 10: 481
-
[140]
[140] Kim J, Rees D C. Nature, 1992, 360: 553
-
[141]
[141] Kim J, Rees D C. Science, 1992, 257: 1677
-
[142]
[142] Howard J B, Rees D C. Proceedings of the National Academy of Sciences of the United States of America. 2006, 103: 17088
-
[143]
[143] Rees D C, Tezcan F A, Haynes C A, Walton M Y, Andrade S, Einsle O, Howard J B. Philosophical Transactions of the Royal Society A, 2005, 363: 971
-
[144]
[144] Hamilton T L, Lange R K, Boyd E S, Peters J W. Environ Microbiology, 2011, 13: 2204
-
[145]
[145] Cheng Q. J Integrative Plant Biology, 2008, 50: 786
-
[146]
[146] Tuczek F. Nachrichten aus der Chem, 2006, 54: 1190
-
[147]
[147] de Matos Nogueira E, Olivares F L, Japiassu J C, Vilar C, Vinagre F, Baldani J I, Silva Hemerly A. Plant Sci, 2005, 169: 819
-
[148]
[148] Studt F, Tuczek F. Angew Chem Int Ed, 2005, 44: 5639
-
[149]
[149] Dixon R, Kahn D. Nature Rev Microbiol, 2004, 2: 621
-
[150]
[150] Gehring C, Vlek P L G. Basic Appl Ecol, 2004, 5: 567
-
[151]
[151] Vinther F P. Plant Soil, 1998, 203: 207
-
[152]
[152] Reetz M T. In: 15th International Congress on Catalysis. Munich, Germany, 2012
-
[153]
[153] Wang T F. Chem Ind Eng Progr (王庭富. 化工进展), 2001, (8): 6
-
[154]
[154] Wu H Y. Chem Eng Design (伍宏业. 化工设计), 2002, 12(4): 3
-
[1]
-
-
-
[1]
Youjun Fan , Dandan Cai , Wei Chen , Jianhua Qiu . Exploration and Practice of Ideological and Political Education Reform in Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 119-124. doi: 10.3866/PKU.DXHX202310123
-
[2]
Jie Li , Rong Lai , Xianfang Xu , Houjin Li , Hongyan Chen , Fang Zhu . Exploration and Practice in the Construction of the National Demonstration Center for Experimental Chemistry Education: A Case Study of Sun Yat-sen University. University Chemistry, 2024, 39(7): 223-229. doi: 10.12461/PKU.DXHX202406054
-
[3]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[4]
Qiaowei Li , Huadong Wang , Junli Hou . Exploration and Reflection on Graduate Curriculum Development under the New Paradigm of Chemistry Advancement. University Chemistry, 2024, 39(6): 50-54. doi: 10.3866/PKU.DXHX202401044
-
[5]
Anyang Li , Xiaohui Ning , Zhihui Ren , Wei Sun , Yan Li , Bin Cui . Support and Guarantee for Talent Cultivation and Discipline Development: Exploration and Practice of the Construction of National Demonstration Center for Experimental Chemistry Education in Northwest University. University Chemistry, 2024, 39(7): 140-146. doi: 10.12461/PKU.DXHX202405052
-
[6]
Xiaofei Zhou , Yu-Qing Cao , Feng Zhu , Li Qi , Linhai Liu , Ni Yan , Zhiqiang Zhu . Missions and Challenges of Instrumental Analysis Course in the New Era. University Chemistry, 2024, 39(6): 174-180. doi: 10.3866/PKU.DXHX202310058
-
[7]
Guoze Yan , Bin Zuo , Shaoqing Liu , Tao Wang , Ruoyu Wang , Jinyang Bao , Zhongzhou Zhao , Feifei Chu , Zhengtong Li , Yusuke Yamauchi , Saad Melhi , Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006
-
[8]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[9]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[10]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[11]
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
-
[12]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[13]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[14]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
-
[15]
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
-
[16]
Haorui Gu , Ning Li , Zhanxiang Liu , Xufeng Lin . Construction and Development of Chemistry Experimental Teaching Center under the Background of the “101 Plan”. University Chemistry, 2024, 39(7): 110-115. doi: 10.12461/PKU.DXHX202405022
-
[17]
Zhengli Hu , Jia Wang , Yi-Lun Ying , Shaochuang Liu , Hui Ma , Wenwei Zhang , Jianrong Zhang , Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072
-
[18]
Zhenli Sun , Ning Wang , Kexin Lin , Qin Dai , Yufei Zhou , Dandan Cao , Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095
-
[19]
Yu SU , Xinlian FAN , Yao YIN , Lin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126
-
[20]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(833)
- HTML views(171)