Citation: Cuong Duong-Viet, Housseinou Ba, Yuefeng Liu, Lai Truong-Phuoc, Jean-Mario Nhut, Cuong Pham-Huu. Nitrogen-doped carbon nanotubes on silicon carbide as a metal-free catalyst[J]. Chinese Journal of Catalysis, ;2014, 35(6): 906-913. doi: 10.1016/S1872-2067(14)60116-9 shu

Nitrogen-doped carbon nanotubes on silicon carbide as a metal-free catalyst

  • Corresponding author: Yuefeng Liu,  Cuong Pham-Huu, 
  • Received Date: 31 March 2014
    Available Online: 21 April 2014

  • A hierarchical metal-free catalyst consisting of nitrogen-doped carbon nanotubes decorated onto a silicon carbide (N-CNTs/SiC) macroscopic host structure was prepared. The influence of N-CNTs incorporation on the physical properties of the support was evaluated using different characterization techniques. The catalyst was tested as a metal-free catalyst in the selective oxidation of H2S and steam-free dehydrogenation of ethylbenzene. The N-CNTs/SiC catalyst exhibited extremely good desulfurization performance compared to a Fe2O3/SiC catalyst under less conducive reaction conditions such as low temperature, high space velocity, and a low O2-to-H2S molar ratio. For the dehydrogenation of ethylbenzene, a higher dehydrogenation activity was obtained with the N-CNTs/SiC catalyst compared to a commercial K-Fe/Al2O3 catalyst. The N-CNTs/SiC catalyst also displayed good stability as a function of time on stream for both reactions, which was attributed to the strong anchoring of the nitrogen dopant in the carbon matrix. The extrudate shape of the SiC support allowed the direct macroscopic shaping of the catalyst for use in a conventional fixed-bed reactor without the problems of catalyst handling, transportation, and pressure drop across the catalyst bed that are encountered with nanoscopic carbon-based catalysts.
  • 加载中
    1. [1]

      [1] Yasuda S, Yu L, Kima J, Murakoshi K. Chem Commun, 2013, 49: 9627

    2. [2]

      [2] Tuci G, Zafferoni C, D'Ambrosio P, Caporali S, Ceppatelli M, Rossin A, Tsoufis T, Innocenti M, Giambastiani G. ACS Catal, 2013, 3: 2108

    3. [3]

      [3] Qu L T, Liu Y, Baek J-B, Dai L M. ACS Nano, 2010, 4: 1321

    4. [4]

      [4] Nederlof C, Kapteijn F, Makkee M. Appl Catal A, 2012, 417-418: 163

    5. [5]

      [5] Bégin D, Ulrich G, Amadou J, Su D S. Pham-Huu C, Ziessel R. J Mol Catal A, 2009, 302: 119

    6. [6]

      [6] Chen C L, Zhang J, Zhang B S, Yu C L, Peng F, Su D S. Chem Commun, 2013, 49: 8151

    7. [7]

      [7] Amadou J, Chizari K, Houllé M, Janowska I, Ersen O, Bégin D, Pham-Huu C. Catal Today,2008, 138: 62

    8. [8]

      [8] Villa A, Tessonnier J P, Majoulet O, Su D S, Schlögl R. Chem Commun, 2009: 4405

    9. [9]

      [9] Villa A, Tessonnier J P, Majoulet O, Su D S, R. Schlögl R. ChemSusChem,2010, 3: 241

    10. [10]

      [10] Cao Y H, Yu H, Tan J, Peng F, Wang H J, Li J, Zheng W X, Wong N B. Carbon, 2013, 57: 433

    11. [11]

      [11] Chizari K, Deneuve A, Ersen O, Florea I, Liu Y, Edouard D, Janowska T, Begin D, Pham-Huu C. ChemSusChem, 2012,5: 102

    12. [12]

      [12] Long J L, Xie X Q, Xu J, Gu Q, Chen L M, Wang X X. ACS Catal, 2012, 2: 622

    13. [13]

      [13] Su D S, Perathoner S, Centi G. Chem Rev, 2013, 113: 5782

    14. [14]

      [14] Wang H B, Maiyalagan T, Wang X. ACS Catal, 2012, 2: 781

    15. [15]

      [15] Yu D S, Nagelli E, Du F, Dai L M. J Phys Chem Lett, 2010, 1: 2165

    16. [16]

      [16] Peng S, Cho K. Nano Lett, 2003, 3: 513

    17. [17]

      [17] Su D S, Zhang J, Frank B, Thomas A, Wang X C, Paraknowitsch J, Schlögl R. ChemSusChem, 2010, 3: 169

    18. [18]

      [18] Luo J, Peng F, Wang H, Yu H. Catal Commun, 2013, 39: 44

    19. [19]

      [19] Gao Y J, Hu G, Zhong J, Shi Z J, Zhu Y S, Su D S, Wang J G, Bao X H, Ma D. Angew Chem Int Ed, 2013, 52: 2109

    20. [20]

      [20] Liu Y F, Nguyen L D, Truong-Huu T, Liu Y, Romero T, Janowska I, Begin D, Pham-Huu C. Mater Lett, 2012, 79: 128

    21. [21]

      [21] Nguyen P, Pham C. Appl Catal A, 2011, 391: 443

    22. [22]

      [22] Deneuve A, Florea I, Ersen O, Nguyen P, Pham C, Begin D, Edouard D, Ledoux M J, Pham-Huu C. Appl Catal A, 2010, 385: 52

    23. [23]

      [23] Florea I, Ersen O, Hirlimann C, Roiban L, Deneuve A, Houllé M, Janowska I, Nguyen P, Pham C, Pham-Huu C. Nanoscale, 2010, 2: 2668

    24. [24]

      [24] Liu Y F, Ersen O, Meny C, Luck F, Pham-Huu C. ChemSusChem, 2014, DOI: 10.1002/cssc.201300921

    25. [25]

      [25] Chizari K, Janowska I, Houllé M, Florea I, Ersen O, Romero T, Bernhardt P, Ledoux M J, Pham-Huu C. Appl Catal A, 2010, 380: 72

    26. [26]

      [26] Louis B, Gulino G, Vieira R, Amadou J, Dintzer T, Galvagno S, Centi G, Ledoux MJ, Pham-Huu C. Catal Today, 2005, 102-103: 23

    27. [27]

      [27] Florea I, Ersen O, Arenal R, Ihiawakrim D, Messaoudi C, Chizari K, Janowska I, Pham-Huu C. J Am Chem Soc, 2012, 134: 9672

    28. [28]

      [28] Terrones M, Benito A M, Manteca-DiegoC, Hsu W K, Osman O I, Hare J P, Reid D G, Terrones H, Cheetham A K, Prassides K, Kroto H W, Walton D R M. Chem Phys Lett, 1996, 257: 576

    29. [29]

      [29] Zhong D Y, Lin S, Zhang G Y, Wang E G. J Appl Phys, 2001, 89: 5939

    30. [30]

      [30] Chizari K, Vena A, Laurentius L, Sundararaj U. Carbon, 2014, 68: 369

    31. [31]

      [31] Biniak S, Szymanski G, Siedlewski J, Wiatkoski A. Carbon, 1997,35: 1799

    32. [32]

      [32] Choi H C, Park J, Kim B. J Phys Chem B, 2005, 109: 4333

    33. [33]

      [33] Choi H C, SBae S Y, Park J, Seo K, Kim C, Kim B, Song H J, Shin H J. Appl Phys Lett, 2004, 85: 5742

    34. [34]

      [34] Strelko V V, Kartel N T, Dukhno I N, Kuts V S, Clarkson R B, Odintsov B M. Surf Sci, 2004, 548: 281

    35. [35]

      [35] Gulino G, Vieira R, Amadou J, Nguyen P, Ledoux M J, Galvagno S, Centi G, Pham-Huu C. Appl Catal A, 2005, 279: 89

    36. [36]

      [36] Liu Y F, Dintzer T, Ersen O, Pham-Huu C. J Energy Chem, 2013, 22: 279

    37. [37]

      [37] Keller N, Pham-Huu C, Crouzet C, Ledoux M J, Savin-Poncet S, Nougayrede J B, Bousquet J. Catal Today, 1999, 53: 535

    38. [38]

      [38] Nguyen P, Edouard D, Nhut J M, Ledoux M J, Pham C, Pham-Huu C. Appl Catal B, 2007, 76: 300

    39. [39]

      [39] Zhao Q, Feillinger T P, Antoneitti M, Yuan J. J Mater Chem A, 2013, 1: 5113

    40. [40]

      [40] Gong K P, Du F, Xia Z H, Durstock M, Dai L M. Science, 2009, 323: 760

    41. [41]

      [41] Keller N, Pham-Huu C, Ledoux M J. Appl Catal A, 2001, 217: 205

    42. [42]

      [42] Zhang J, Su D S, Blume R, Schlogl R, Wang R, Yang X G, Gajovic A. Angew Chem Int Ed, 2010, 49: 8640

  • 加载中
    1. [1]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    2. [2]

      Shangqian ZhangJiaxuan LiXuan HuZelong ChenJunliang DongChenhao HuShuang ChaoYinghua LvYuxin PeiZhichao Pei . H2S and NIR light-driven nanomotors induce disulfidptosis for targeted anticancer therapy by enhancing disruption of tumor metabolic symbiosis. Chinese Chemical Letters, 2025, 36(1): 110314-. doi: 10.1016/j.cclet.2024.110314

    3. [3]

      Yu YaoJinqiang ZhangYantao WangKunsheng HuYangyang YangZhongshuai ZhuShuang ZhongHuayang ZhangShaobin WangXiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633

    4. [4]

      Yun-Fei ZhangChun-Hui ZhangJian-Hui XuLei LiDan LiJin-Hong FanJiale GaoXin QuanQi WuYue ZouYan-Ling Liu . Enhanced degradation of florfenicol by microscale SiC/Fe: Dechlorination via hydrogenolysis. Chinese Chemical Letters, 2024, 35(7): 109385-. doi: 10.1016/j.cclet.2023.109385

    5. [5]

      Lingyun ShenShenxiang YinQingshu ZhengZheming SunWei WangTao Tu . A rechargeable and portable hydrogen storage system grounded on soda water. Chinese Chemical Letters, 2025, 36(3): 110580-. doi: 10.1016/j.cclet.2024.110580

    6. [6]

      Tianyi YangFangxi SuDehuan ShiShenghong ZhongYalin GuoZhaohui LiuJianfeng Huang . Efficient propane dehydrogenation catalyzed by Ru nanoparticles anchored on a porous nitrogen-doped carbon matrix. Chinese Chemical Letters, 2025, 36(2): 110444-. doi: 10.1016/j.cclet.2024.110444

    7. [7]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    8. [8]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    9. [9]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    10. [10]

      Xiujuan WangYijie WangLuyun CuiWenqiang GaoXiao LiHong LiuWeijia ZhouJingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031

    11. [11]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    12. [12]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    13. [13]

      Jia-Mei QinXue LiWei LangFu-Hao ZhangQian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925

    14. [14]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    15. [15]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    16. [16]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    17. [17]

      Yan WangJiaqi ZhangXiaofeng WuSibo WangMasakazu AnpoYuanxing Fang . Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts. Chinese Chemical Letters, 2025, 36(2): 110439-. doi: 10.1016/j.cclet.2024.110439

    18. [18]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    19. [19]

      Zhong-Hui SunYu-Qi ZhangZhen-Yi GuDong-Yang QuHong-Yu GuanXing-Long Wu . CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(1): 109590-. doi: 10.1016/j.cclet.2024.109590

    20. [20]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

Metrics
  • PDF Downloads(195)
  • Abstract views(523)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return