Citation:
Kuang-Hsu Wu, Da-Wei Wang, Qingcong Zeng, Yang Li, Ian R. Gentle. Solution phase synthesis of halogenated graphene and the electrocatalytic activity for oxygen reduction reaction[J]. Chinese Journal of Catalysis,
;2014, 35(6): 884-890.
doi:
10.1016/S1872-2067(14)60108-X
-
Metal-free carbon electrocatalyts for the oxygen reduction reaction (ORR) are attractive for their high activity and economic advantages. However, the origin of the activity has never been clearly elucidated in a systematic manner. Halogen group elements are good candidates for elucidating the effect, although it has been a difficult task due to safety issues. In this report, we demonstrate the synthesis of Cl-, Br-and I-doped reduced graphene oxide through two solution phase syntheses. We have evaluated the effectiveness of doping and performed electrochemical measurements of the ORR activity on these halogenated graphene materials. Our results suggest that the high electronegativity of the dopant is not the key factor for high ORR activity; both Br-and I-doped graphene promoted ORR more efficiently than Cl-doped graphene. Furthermore, an unexpected sulfur-doping in acidic conditions suggests that a high level of sulfide can degrade the ORR activity of the graphene material.
-
-
-
[1]
[1] Hoogers G. Fuel Cell Technology Handbook. CRC Press, 2002. 1-1
-
[2]
[2] Wang B. J Power Sources, 2005, 152: 1
-
[3]
[3] Cheng F, Chen J. Chem Soc Rev, 2012, 41: 2172
-
[4]
[4] Gong K P, Du F, Xia Z H, Durstock M, Dai L M. Science, 2009, 323: 760
-
[5]
[5] Zhou X, Tian Z, Li J, Ruan H, Ma Y, Yang Z, Qu Y. Nanoscale, 2014, 6: 2603
-
[6]
[6] Poh H L, Šimek P, Sofer Z, Pumera M. Chem Eur J, 2013, 19: 2655
-
[7]
[7] Zheng J, Liu H T, Wu B, Di C A, Guo Y L, Wu T, Yu G, Liu Y Q, Zhu D B. Sci Rep, 2012, 2: 662
-
[8]
[8] Wu J, Xie L, Li Y, Wang H, Ouyang Y, Guo J, Dai H. J Am Chem Soc, 2011, 133: 19668
-
[9]
[9] Lee W H, Suk J W, Chou H, Lee J, Hao Y, Wu Y, Piner R, Akinwande D, Kim K S, Ruoff R S. Nano Lett, 2012, 12: 2374
-
[10]
[10] Marcano D C, Kosynkin D V, Berlin J M, Sinitskii A, Sun Z, Slesarev A, Alemany L B, Lu W, Tour J M. ACS Nano, 2010, 4: 4806
-
[11]
[11] Seery D J, Britton D. J Phys Chem, 1964, 68: 2263
-
[12]
[12] Doskocil E J, Bordawekar S V, Kaye B G, Davis R J. J Phys Chem B, 1999, 103: 6277
-
[13]
[13] Park C D, Choi W Y, Kang H. Radiat Eff Defect S, 1990, 115: 65
-
[14]
[14] Zhou X L, Solymosi F, Blass P M, Cannon K C, White J M. Surf Sci, 1989, 219: 294
-
[15]
[15] Crist B V. Surf Sci Spectra, 1992, 1: 292
-
[16]
[16] Solymosi F, Révész K. Surf Sci, 1993, 280: 38
-
[17]
[17] Morgan W E, Van Wazer J R, Stec W J. J Am Chem Soc, 1973, 95: 751
-
[18]
[18] Kelemen S R, George G N, Gorbaty M L. Fuel, 1990, 69: 939
-
[19]
[19] Yu X R, Liu F, Wang Z Y, Chen Y. J Electron Spectrosc Relat Phenom, 1990, 50: 159
-
[20]
[20] Dillard J G, Moers H, Klewe-Nebenius H, Kirch G, Pfennig G, Ache H J. J Phys Chem, 1984, 88: 4104
-
[21]
[21] Zhang J, Song C. Electrocatalytic Oxygen Reduction Reaction, PEM Fuel Cell Electrocatalysts and Catalyst Layers, Springer, 2008. 89
-
[22]
[22] Yang Z, Yao Z, Li G, Fang G, Nie H, Liu Z, Zhou X, Chen X, Huang S. ACS Nano, 2011, 6: 205
-
[23]
[23] Tan Y, Xu C, Chen G, Fang X, Zheng N, Xie Q. Adv Func Mater, 2012, 22: 4584
-
[24]
[24] Wang D W, Su D. Ener Environ Sci, 2014, 7: 576
-
[1]
-
-
-
[1]
Sanmei Wang , Yong Zhou , Hengxin Fang , Chunyang Nie , Chang Q Sun , Biao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476
-
[2]
Min Song , Qian Zhang , Tao Shen , Guanyu Luo , Deli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083
-
[3]
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
-
[4]
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
-
[5]
Tianli Hui , Tao Zheng , Xiaoluo Cheng , Tonghui Li , Rui Zhang , Xianghai Meng , Haiyan Liu , Zhichang Liu , Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520
-
[6]
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
-
[7]
Yi Zhou , Yanzhen Liu , Yani Yan , Zonglin Yi , Yongfeng Li , Cheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569
-
[8]
Junan Pan , Xinyi Liu , Huachao Ji , Yanwei Zhu , Yanling Zhuang , Kang Chen , Ning Sun , Yongqi Liu , Yunchao Lei , Kun Wang , Bao Zang , Longlu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515
-
[9]
Jinli Chen , Shouquan Feng , Tianqi Yu , Yongjin Zou , Huan Wen , Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168
-
[10]
Cheng Guo , Xiaoxiao Zhang , Xiujuan Hong , Yiqiu Hu , Lingna Mao , Kezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867
-
[11]
Sanmei Wang , Dengxin Yan , Wenhua Zhang , Liangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611
-
[12]
Wenjing Xiong , Yulin Xu , Fangzhou Zhao , Baokai Xia , Hongqiang Wang , Wei Liu , Sheng Chen , Yongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738
-
[13]
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
-
[14]
Jialin Cai , Yizhe Chen , Ruiwen Zhang , Cheng Yuan , Zeyu Jin , Yongting Chen , Shiming Zhang , Jiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255
-
[15]
Caili Yang , Tao Long , Ruotong Li , Chunyang Wu , Yuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675
-
[16]
Chenhao Zhang , Qian Zhang , Yezhou Hu , Hanyu Hu , Junhao Yang , Chang Yang , Ye Zhu , Zhengkai Tu , Deli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429
-
[17]
Jin Long , Xingqun Zheng , Bin Wang , Chenzhong Wu , Qingmei Wang , Lishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354
-
[18]
Quanyou Guo , Yue Yang , Tingting Hu , Hongqi Chu , Lijun Liao , Xuepeng Wang , Zhenzi Li , Liping Guo , Wei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235
-
[19]
Yan Wang , Jiaqi Zhang , Xiaofeng Wu , Sibo Wang , Masakazu Anpo , Yuanxing Fang . Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts. Chinese Chemical Letters, 2025, 36(2): 110439-. doi: 10.1016/j.cclet.2024.110439
-
[20]
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
-
[1]
Metrics
- PDF Downloads(195)
- Abstract views(502)
- HTML views(72)