Citation:
Teresa J. Bandosz, Mykola Seredych. On the photoactivity of S-doped nanoporous carbons:Importance of surface chemistry and porosity[J]. Chinese Journal of Catalysis,
;2014, 35(6): 807-814.
doi:
10.1016/S1872-2067(14)60100-5
-
This minireview summarizes our recent findings on the photoactivity of S-doped nanoporous carbons. The materials were either synthesized from the sulfur-containing polymers or obtained by heat treatment of commercial carbon with hydrogen sulfide. Their surface was extensively characterized from the points of view of its surface chemistry, porosity, morphology, and electronic properties. The carbons showed enhanced activity towards oxidation of arsine and removal of dibenzothiophenes from model diesel fuel. The latter were oxidized to various oxygen containing intermediates and the cleavage of C-C bonds in aromatic ring was detected when carbon with adsorbed species was exposed to UV or visible light. Irradiation resulted in generation of photocurrent in a broad range of wavelength. The presence of sulfur led to the reduction of oxygen and contributed to an increased capacitive performance. We link these effects to the presence of reduced sulfur in the small pores which enhances the dispersive interactions via inducing a positive charge to carbon atoms, to sulfur in oxygenated forms which contribute to Faradaic reactions and increase the polar interactions, and to the hydrophobicity of a surface in small pores where oxygen can be reduced by excited electrons from chromophoric-like sulfur containing groups.
-
-
-
[1]
[1] Wang D, Hisatomi T, Takata T, Pan C, Katayama M, Kubota J, Domen K. Angew Chem Int Ed, 2013, 52: 11252; Angew Chem, 2013, 125: 11462
-
[2]
[2] Maeda K, Lu D, Domen K. Chem Eur J, 2013, 19: 4986
-
[3]
[3] Maeda K. Chem Commun, 2013, 49: 8404
-
[4]
[4] Li C J, Xu G R, Zhang B H, Gong J R. Appl Catal B,2012, 115-116: 201
-
[5]
[5] Kudo A, Kato H. Chem Phys Lett,2000, 331: 373
-
[6]
[6] Yan H J, Yang J H, Ma G J, Wu G P, Zong X, Lei Z B, Shi J Y, Li C. J Catal,2009, 266: 165
-
[7]
[7] Xie G C, Zhang K, Guo B D, Liu Q, Fang L, Gong J R. Adv Mater, 2013, 25: 3820
-
[8]
[8] Grätzel M. J Photochem Photobiol A, 2004, 164: 3
-
[9]
[9] Maeda K, Teramura K, Saito N, Inoue Y, Kobayashi H, Domen K. Pure Appl Chem,2006, 78: 2267
-
[10]
[10] Ishikawa A, Takata T, Matsumura T, Kondo J N, Hara M, Kobayashi H, Domen K. J Phys Chem B, 2004, 108: 2637
-
[11]
[11] Hitoki G, Takata T, Kondo J N, Hara M, Kobayashi H, Domen K. Chem Commun,2002: 1698
-
[12]
[12] Islam S M Z,Gayen T,Seredych M,Mabayoje O, Shi L Y, Bandosz T J, Alfano R R. J Appl Phys, 2013, 114: 043522/1
-
[13]
[13] Islam S M Z,Gayen T,Tint N, Shi L Y, Ebrahim A M, Seredych M, Bandosz T J,Alfano R. J Photonics Energy, 2014, 4: 043098
-
[14]
[14] Ng Y H, Iwase A, Kudo A, Amal R. J Phys Chem Lett, 2010, 1: 2607
-
[15]
[15] Min S X, Lu G X. J Phys Chem C, 2011, 115: 13938
-
[16]
[16] Velasco L F, Maurino V, Laurenti E, Ania C. Appl Catal A, 2013, 453: 310
-
[17]
[17] Pandolfo A G, Hollenkamp A F. J Power Sour, 2006, 157: 11
-
[18]
[18] Hulicova-Jurcakova D, Seredych M, Lu G Q, Bandosz T J. Adv Funct Mater, 2009, 19: 438
-
[19]
[19] Andreas H A, Conway B E. Electrochim Acta, 2006, 51: 6510
-
[20]
[20] Seredych M, Hulicova-Jurcakova D, Lu G Q, Bandosz T J. Carbon, 2008, 46: 1475
-
[21]
[21] Hulicova D, Kodama M, Hatori H. Chem Mater, 2006, 18: 2318
-
[22]
[22] Wang D W, Li F, Yin L C, Lu X, Chen Z G, Gentle I R, Lu G Q, Cheng H M. Chem Eur J, 2012, 18: 5345
-
[23]
[23] Seredych M, Bandosz T J. J Mater Chem A, 2013, 1: 11717
-
[24]
[24] Seredych M, Singh K, Bandosz T J. Electroanalysis, 2014, 26: 109
-
[25]
[25] Zhao X C, Zhang Q, Chen C M, Zhang B S, Reiche S, Wang A Q, Zhang T, Schlogl R, Su D S. Nano Energy, 2012, 1: 624
-
[26]
[26] Bandosz T J, Matos J, Seredych M, Islam S M Z, Alfano R. Appl Catal A, 2012, 445-446: 159
-
[27]
[27] Liang J, Jiao Y, Jaroniec M, Qiao S Z. Angew Chem Int Ed, 2012, 51: 1; Angew Chem, 2012, 124: 11664
-
[28]
[28] Seredych M, Bandosz T J. Carbon, 2014, 66: 227
-
[29]
[29] Han S, Wu D Q, Li S, Zhang F, Feng X L. Adv Mater,2014, 26: 849
-
[30]
[30] Eda G, Lin Y Y, Mattevi C, Yamaguchi H, Chen H A, Chen I S, Chen C W, Chhowalla M. Adv Mater, 2010, 22: 505
-
[31]
[31] Shang J Z, Ma L, Li J W, Ai W, Yu T, Gurzadyan G G. Sci Rep, 2012, 2: 792
-
[32]
[32] Hola K, Bourlinos A B, Kozak O, Berka K, Siskova K M, Havrdova M, Tucek J, Safarova K, Otyepka M, Giannelis E P, Zboril R. Carbon, 2014, 70: 279
-
[33]
[33] Fan R J, Sun Q, Zhang L, Zhang Y, Lu A H. Carbon, 2014, 71: 87
-
[34]
[34] Baranauskas V, Tosin M C, Ceragioli H J, Zhao J G, Peterlevitz A C, Durrant S F. Phys Stat Sol A, 2000, 182: 395
-
[35]
[35] Seredych M, Messali L, Bandosz T J. Carbon, 2013, 62: 356
-
[36]
[36] Seredych M, Bandosz T J. Fuel, 2013, 108: 846
-
[37]
[37] Seredych M, Khine M, Bandosz T J. ChemSusChem, 2011, 4: 139
-
[38]
[38] Seema H, Kemp K C, Le N H, Park S W, Chandra V, Lee J W, Kim K S. Carbon, 2014, 66: 320
-
[39]
[39] Seredych M, Jagiello J, Bandosz T J. Carbon, 2014, DOI: 10.1016/ j.carbon.2014.03.024
-
[40]
[40] Petit C, Kante K, Bandosz T J. Carbon, 2010, 48: 654
-
[41]
[41] Kicinski W, Szala M, Bystrzejewski M. Carbon, 2014, 68: 1
-
[42]
[42] Petit C, Peterson G W, Mahle J, Bandosz T J. Carbon, 2010, 48: 1779
-
[43]
[43] Singh K, Seredych M, Rodriguez-Castellon E, Bandosz T J. ChemElectroChem, 2014, 1: 565
-
[44]
[44] Putyera K, Jagiello J, Bandosz T J, Schwarz J A. Carbon, 1995, 33: 1047
-
[45]
[45] Schwarz J A, Putyera K, Jagiello J, Bandosz T J. US Patent 5614460. 1997
-
[46]
[46] Hines D, Bagreev A, Bandosz T J. Langmuir, 2004, 20: 3388
-
[47]
[47] Ania C O, Bandosz T J. Langmuir, 2005, 21: 7752
-
[48]
[48] Seredych M, Bandosz T J. Appl Catal B, 2011, 106: 133
-
[49]
[49] Stöhr B, Boehm H P, Schlögl R. Carbon, 1991, 29: 707
-
[50]
[50] Strelko V V, Kuts V S, Thrower P A. Carbon, 2000, 38: 1499
-
[51]
[51] Haacke G, Brien J S, Burkhard H. J Electrochem Soc, 1988, 135: 715
-
[52]
[52] Navarro Yerga R M, Alvarez-Galvan M C, Del Valle F, Villoria de la Mano J A, Fierro J L G. ChemSusChem, 2009, 2: 471
-
[53]
[53] Seredych M, Wu C T, Brender P, Ania C O, Vix-Guterl C, Bandosz T J. Fuel, 2012, 92: 318
-
[54]
[54] Velasco L F, Maurino V, Laurenti E, Fonseca I M, Lima J C, Ania C O. Appl Catal A, 2013, 452: 1
-
[55]
[55] Seredych M, Bandosz T J. Appl Catal B, 2014, 147: 842
-
[56]
[56] Salitra G, Soffer A, Eliad L, Cohen Y, Aurbach D. J Electrochem Soc,2000, 147: 2486
-
[57]
[57] Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna P L. Science, 2006, 313: 1760
-
[58]
[58] Seredych M, Koscinski M, Sliwinska-Bartkowiak M, Bandosz T J. ACS Sustainable Chem Eng, 2013, 1: 1024
-
[59]
[59] Gomez H, Ram M K, Alvi F, Villalba P, Stafanakos E, Kumar A. J Power Sources, 2011, 196: 4102
-
[60]
[60] Seredych M, Koscinski M, Sliwinska-Bartkowiak M, Bandosz T J. J Power Sources, 2012, 220: 243
-
[1]
-
-
-
[1]
Xin Li , Zhen Xu , Donglei Bu , Jinming Cai , Huamei Chen , Qi Chen , Ting Chen , Fang Cheng , Lifeng Chi , Wenjie Dong , Zhenchao Dong , Shixuan Du , Qitang Fan , Xing Fan , Qiang Fu , Song Gao , Jing Guo , Weijun Guo , Yang He , Shimin Hou , Ying Jiang , Huihui Kong , Baojun Li , Dengyuan Li , Jie Li , Qing Li , Ruoning Li , Shuying Li , Yuxuan Lin , Mengxi Liu , Peinian Liu , Yanyan Liu , Jingtao Lü , Chuanxu Ma , Haoyang Pan , JinLiang Pan , Minghu Pan , Xiaohui Qiu , Ziyong Shen , Shijing Tan , Bing Wang , Dong Wang , Li Wang , Lili Wang , Tao Wang , Xiang Wang , Xingyue Wang , Xueyan Wang , Yansong Wang , Yu Wang , Kai Wu , Wei Xu , Na Xue , Linghao Yan , Fan Yang , Zhiyong Yang , Chi Zhang , Xue Zhang , Yang Zhang , Yao Zhang , Xiong Zhou , Junfa Zhu , Yajie Zhang , Feixue Gao , Yongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055
-
[2]
Xin Li , Zhen Xu , Donglei Bu , Jinming Cai , Huamei Chen , Qi Chen , Ting Chen , Fang Cheng , Lifeng Chi , Wenjie Dong , Zhenchao Dong , Shixuan Du , Qitang Fan , Xing Fan , Qiang Fu , Song Gao , Jing Guo , Weijun Guo , Yang He , Shimin Hou , Ying Jiang , Huihui Kong , Baojun Li , Dengyuan Li , Jie Li , Qing Li , Ruoning Li , Shuying Li , Yuxuan Lin , Mengxi Liu , Peinian Liu , Yanyan Liu , Jingtao Lü , Chuanxu Ma , Haoyang Pan , JinLiang Pan , Minghu Pan , Xiaohui Qiu , Ziyong Shen , Qiang Sun , Shijing Tan , Bing Wang , Dong Wang , Li Wang , Lili Wang , Tao Wang , Xiang Wang , Xingyue Wang , Xueyan Wang , Yansong Wang , Yu Wang , Kai Wu , Wei Xu , Na Xue , Linghao Yan , Fan Yang , Zhiyong Yang , Chi Zhang , Xue Zhang , Yang Zhang , Yao Zhang , Xiong Zhou , Junfa Zhu , Yajie Zhang , Feixue Gao , Li Wang . Recent progress on surface chemistry Ⅱ: Property and characterization. Chinese Chemical Letters, 2025, 36(1): 110100-. doi: 10.1016/j.cclet.2024.110100
-
[3]
Zeyu Jiang , Yadi Wang , Changwei Chen , Chi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400
-
[4]
Xiaoxue Li , Hongwei Zhou , Rongrong Qian , Xu Zhang , Lei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036
-
[5]
Zhikang Wu , Guoyong Dai , Qi Li , Zheyu Wei , Shi Ru , Jianda Li , Hongli Jia , Dejin Zang , Mirjana Čolović , Yongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061
-
[6]
Chen Lian , Si-Han Zhao , Hai-Lou Li , Xinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343
-
[7]
Xinxiu Yan , Xizhe Huang , Yangyang Liu , Weishang Jia , Hualin Chen , Qi Yao , Tao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426
-
[8]
Min Song , Qian Zhang , Tao Shen , Guanyu Luo , Deli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083
-
[9]
Lan Ma , Cailu He , Ziqi Liu , Yaohan Yang , Qingxia Ming , Xue Luo , Tianfeng He , Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046
-
[10]
Ling Tang , Yan Wan , Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345
-
[11]
Zhiqiang Wang , Yajie Gao , Tianjun Wang , Wei Chen , Zefeng Ren , Xueming Yang , Chuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602
-
[12]
Dongmei Yao , Junsheng Zheng , Liming Jin , Xiaomin Meng , Zize Zhan , Runlin Fan , Cong Feng , Pingwen Ming . Effect of surface oxidation on the interfacial and mechanical properties in graphite/epoxy composites composite bipolar plates. Chinese Chemical Letters, 2024, 35(11): 109382-. doi: 10.1016/j.cclet.2023.109382
-
[13]
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
-
[14]
Yan Zou , Yin-Shuang Hu , Deng-Hui Tian , Hong Wu , Xiaoshu Lv , Guangming Jiang , Yu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090
-
[15]
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
-
[16]
Jialin Cai , Yizhe Chen , Ruiwen Zhang , Cheng Yuan , Zeyu Jin , Yongting Chen , Shiming Zhang , Jiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255
-
[17]
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416
-
[18]
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
-
[19]
Huixin Chen , Chen Zhao , Hongjun Yue , Guiming Zhong , Xiang Han , Liang Yin , Ding Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650
-
[20]
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
-
[1]
Metrics
- PDF Downloads(243)
- Abstract views(928)
- HTML views(58)