Citation:
Olga Yu. Podyacheva, Andrei I. Stadnichenko, Svetlana A. Yashnik, Olga A. Stonkus, Elena M. Slavinskaya, Andrei I. Boronin, Andrei V. Puzynin, Zinfer R. Ismagilov. Catalytic and capacity properties of nanocomposites based on cobalt oxide and nitrogen-doped carbon nanofibers[J]. Chinese Journal of Catalysis,
;2014, 35(6): 960-969.
doi:
10.1016/S1872-2067(14)60099-1
-
The nanocomposites based on cobalt oxide and nitrogen-doped carbon nanofibers (N-CNFs) with cobalt oxide contents of 10-90 wt% were examined as catalysts in the CO oxidation and supercapacity electrodes. Depending on Co3O4 content, such nanocomposites have different morphologies of cobalt oxide nanoparticles, distributions over the bulk, and ratios of Co3+/Co2+ cations. The 90%Co3O4-N-CNFs nanocomposite showed the best activity because of the increased concentration of defects in N-CNFs. The capacitance of electrodes containing 10%Co3O4-N-CNFs was 95 F/g, which is 1.7 times higher than electrodes made from N-CNFs.
-
-
-
[1]
[1] Casas-Cabanas M, Binotto G, Larcher D, Lecup A, Giordani V, Tarascon J M. Chem Mater, 2009, 21: 1939
-
[2]
[2] Li W Y, Xu L N, Chen J. Adv Funct Mater, 2005, 15: 851
-
[3]
[3] Farhadi S, Safabakhsh J, Zaringhadam P. J Nanostructure Chem, 2013, 3: 69
-
[4]
[4] Wang X, Tian W, Zhai T Y, Zhi C Y, Bando Y, Golberg D. J Mater Chem, 2012, 22: 23310
-
[5]
[5] Royer S, Duprez D. ChemCatChem, 2011, 3: 24
-
[6]
[6] Jansson J. J Catal, 2000, 194: 55
-
[7]
[7] Yu Y B, Takei T, Ohashi H, He H, Zhang X L, Haruta M. J Catal,2009,267: 121
-
[8]
[8] Xie X W, Li Y, Liu Z Q, Haruta M, Shen W J. Nature, 2009, 458: 746
-
[9]
[9] Ren Y, Ma Z, Qian L P, Dai S, He H Y, Bruce P G. Catal Lett, 2009, 131: 146
-
[10]
[10] Jia C J, Schwickardi M, Weidenthaler C, Schmidt W, Korhonen S, Weckhuysen B M, Schüth F. J Am Chem Soc, 2011, 133: 11279
-
[11]
[11] Li D B, Liu X H, Zhang Q H, Wang Y, Wan H L. Catal Lett, 2009, 127: 377
-
[12]
[12] Tang C W, Wang C B, Chien S H. Catal Lett, 2009, 131: 76
-
[13]
[13] Su D S, Perathoner S, Centi G. Chem Rev, 2013, 113: 5782
-
[14]
[14] Zhu J, Holmen A, Chen D. ChemCatChem, 2013, 5: 378
-
[15]
[15] Su D S, Perathoner S, Centi G. Catal Today, 2012, 186: 1
-
[16]
[16] Bitter J H. J Mater Chem, 2010, 20: 7312
-
[17]
[17] Antolini E. Appl Catal B, 2009, 88: 1
-
[18]
[18] Amadou J, Chizari K, Houlle M, Janowska I, Ersen O, Begin D, Pham-Huu C. Catal Today, 2008, 138: 62
-
[19]
[19] Garcia-Garcia F R, Alvarez-Rodriguez J, Rodriguez-Ramos I, Guerrero-Ruiz A. Carbon, 2010, 48: 267
-
[20]
[20] Bezemer G L, van Laak A, van Dillen A J, de Jong K P. Stud Surf Sci Catal, 2004, 147: 259
-
[21]
[21] Bezemer G L, Radstake P B, Koot V, van Dillen A J, Geus J W, de Jong K P. J Catal, 2006, 237: 291
-
[22]
[22] Lim H D, Gwon H, Kim H, Kim S W, Yoon T, Choi J W, Oh S M, Kang K. Electrochim Acta, 2013, 90: 63
-
[23]
[23] Lang J W, Yan X B, Xue Q J. J Power Sources, 2011, 196: 7841
-
[24]
[24] Ewels C P, Glerup M. J Nanosci Nanotechnol, 2005, 5: 1345
-
[25]
[25] Terrones M, Jorio A, Endo M, Rao A M, Kim Y A, Hayashi T, Terrones H, Charlier J C, Dresselhaus G, Dresselhaus M S. Mater Today, 2004, 7(10): 30
-
[26]
[26] van Dommele S, de Jong K P, Bitter J H. Chem Commun, 2006: 4859
-
[27]
[27] Maldonado S, Morin S, Stevenson K J. Carbon, 2006, 44: 1429
-
[28]
[28] Ismagilov Z R, Shalagina A E, Podyacheva O Yu, Ischenko A V, Kibis L S, Boronin A I, Chesalov Y A, Kochubey D I, Romanenko A I, Anikeeva O B, Buryakov T I, Tkachev E N. Carbon, 2009, 47: 1922
-
[29]
[29] Podyacheva O Yu, Ismagilov Z R, Boronin A I, Kibis L S, Slavinskaya E M, Noskov A S, Shikina N V, Ushakov V A, Ischenko A V. Catal Today, 2012, 186: 42
-
[30]
[30] Shalagina A E, Ismagilov Z R, Podyacheva O Yu, Kvon R I, Ushakov V A. Carbon, 2007, 45: 1808
-
[31]
[31] Mateyshina Y, Ulihin A, Samarov A, Barnakov C, Uvarov N. Solid State Ionics, 2013, 251: 59
-
[32]
[32] Hutchings K N, Wilson M, Larsen P A, Cutler R A. Solid State Ionics, 2006, 177: 45
-
[33]
[33] Radwan N R E, El-Shobaky H G. Thermochim Acta, 2000, 360: 147
-
[34]
[34] Dervishi E, Li Z R, Biris A R, Lupu D, Trigwell S, Biris A S. Chem Mater, 2007, 19: 179
-
[35]
[35] Dervishi E, Li Z R, Watanabe F, Xu Y, Saini V, Biris A R, Biris A S. J Mater Chem, 2009, 19: 3004
-
[36]
[36] Zhang J S, Grzelczak M, Hou Y D, Maeda K, Domen K, Fu X Z, Antoniettu M, Wang X C. Chem Sci, 2012, 3: 443
-
[37]
[37] Chuang T J, Brundle C R, Rice D W. Surf Sci, 1976, 59: 413
-
[38]
[38] Natile M M, Glisenti A. Chem Mater, 2002, 14: 3090
-
[39]
[39] Zhu H W, Razzaq R, Jiang L, Li C S. Catal Commun, 2012, 23: 43
-
[40]
[40] Wang S J, Zhang B P, Zhao C H, Li S J, Zhang M X, Yan L P. Appl Surf Sci, 2011, 257: 3358
-
[41]
[41] Jiang S J, Song S Q. Appl Catal B, 2013, 140-141: 1
-
[42]
[42] Jimenez V M, Fernandez A, Espinos J P, Gonzalez-Elipe A R. J Electron Spectr Rel Phen, 1995, 71: 61
-
[43]
[43] Sexton B A, Hughes A E, Turney T W. J Catal, 1986, 97: 390
-
[44]
[44] Tang C W, Wang C B, Chien S H. Thermochim Acta, 2008, 473: 68
-
[45]
[45] Jacobs G, Ji Y Y, Davis B H, Cronauer D, Kropf A J, Marshall C L. Appl Catal A, 2007, 333: 177
-
[46]
[46] Tomic-Tucakovic B, Majstorovic D, Jelic D, Mentus S. Thermochim Acta, 2012, 541: 15
-
[47]
[47] Hwang S G, Ryu S H, Yun S R, Ko J M, Kim K M, Ryu K S. Mater Chem Phys, 2011, 130: 507
-
[48]
[48] Liu J S, Hu Y, Chuang T L, Huang C L. Thin Solid Films, 2013, 544: 186
-
[49]
[49] Jia C J, Liu Y, Bongard H, Schüth F. J Am Chem Soc, 2010, 132: 1520
-
[50]
[50] Cunningham D A H, Vogel W, Haruta M. Catal Lett, 1999, 63: 43
-
[51]
[51] Liu H L, Wang Y, Gou X L, Qi T, Yang J, Ding Y L. Mater Sci Eng B, 2013, 178: 293
-
[1]
-
-
-
[1]
Yanjie Li , Chaoqun Qu , Siqi Meng , Jiaqi Hu , Ze Gao , Hongji Xu , Rui Gao , Ming Feng . Revealing electronic state evolution of Co(Ⅱ)/Co(Ⅲ) in CoO (111) plane during OER process through magnetic measurement. Chinese Chemical Letters, 2025, 36(3): 109872-. doi: 10.1016/j.cclet.2024.109872
-
[2]
Jumei Zhang , Ziheng Zhang , Gang Li , Hongjin Qiao , Hua Xie , Ling Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278
-
[3]
Fereshte Hassanzadeh-Afruzi , Mina Azizi , Iman Zare , Ehsan Nazarzadeh Zare , Anwarul Hasan , Siavash Iravani , Pooyan Makvandi , Yi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564
-
[4]
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199
-
[5]
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
-
[6]
Jiahao Xie , Jin Liu , Bin Liu , Xin Meng , Zhuang Cai , Xiaoqin Xu , Cheng Wang , Shijie You , Jinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236
-
[7]
Xiujuan Wang , Yijie Wang , Luyun Cui , Wenqiang Gao , Xiao Li , Hong Liu , Weijia Zhou , Jingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031
-
[8]
Huixin Chen , Chen Zhao , Hongjun Yue , Guiming Zhong , Xiang Han , Liang Yin , Ding Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650
-
[9]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[10]
Tianyi Yang , Fangxi Su , Dehuan Shi , Shenghong Zhong , Yalin Guo , Zhaohui Liu , Jianfeng Huang . Efficient propane dehydrogenation catalyzed by Ru nanoparticles anchored on a porous nitrogen-doped carbon matrix. Chinese Chemical Letters, 2025, 36(2): 110444-. doi: 10.1016/j.cclet.2024.110444
-
[11]
Yan Wang , Jiaqi Zhang , Xiaofeng Wu , Sibo Wang , Masakazu Anpo , Yuanxing Fang . Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts. Chinese Chemical Letters, 2025, 36(2): 110439-. doi: 10.1016/j.cclet.2024.110439
-
[12]
Jiaojiao Liang , Youming Peng , Zhichao Xu , Yufei Wang , Menglong Liu , Xin Liu , Di Huang , Yuehua Wei , Zengxi Wei . Boron/phosphorus co-doped nitrogen-rich carbon nanofiber with flexible anode for robust sodium-ion battery. Chinese Chemical Letters, 2025, 36(1): 110452-. doi: 10.1016/j.cclet.2024.110452
-
[13]
Wenjing Dai , Lan Luo , Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442
-
[14]
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
-
[15]
Zhong-Hui Sun , Yu-Qi Zhang , Zhen-Yi Gu , Dong-Yang Qu , Hong-Yu Guan , Xing-Long Wu . CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(1): 109590-. doi: 10.1016/j.cclet.2024.109590
-
[16]
Shimei Wu , Yining Li , Lantao Chen , Yufei Zhang , Lingxing Zeng , Haosen Fan . Hexapod cobalt phosphosulfide nanorods encapsulating into multiple hetero-atom doped carbon frameworks for advanced sodium/potassium ion battery anodes. Chinese Chemical Letters, 2025, 36(4): 109796-. doi: 10.1016/j.cclet.2024.109796
-
[17]
Husitu Lin , Shuangkun Zhang , Dianfa Zhao , Yongkang Wang , Wei Liu , Fan Yang , Jianjun Liu , Dongpeng Yan , Zhanpeng Wu . Flexible polyphosphazene nanocomposite films: Enhancing stability and luminescence of CsPbBr3 perovskite nanocrystals. Chinese Chemical Letters, 2025, 36(4): 109795-. doi: 10.1016/j.cclet.2024.109795
-
[18]
Xingang Kong , Yabei Su , Cuijuan Xing , Weijie Cheng , Jianfeng Huang , Lifeng Zhang , Haibo Ouyang , Qi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428
-
[19]
Hao Zhang , Haonan Qu , Ehsan Bahojb Noruzi , Haibing Li , Feng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731
-
[20]
Tao Wei , Jiahao Lu , Pan Zhang , Qi Zhang , Guang Yang , Ruizhi Yang , Daifen Chen , Qian Wang , Yongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(463)
- HTML views(56)