Citation: Olga Yu. Podyacheva, Andrei I. Stadnichenko, Svetlana A. Yashnik, Olga A. Stonkus, Elena M. Slavinskaya, Andrei I. Boronin, Andrei V. Puzynin, Zinfer R. Ismagilov. Catalytic and capacity properties of nanocomposites based on cobalt oxide and nitrogen-doped carbon nanofibers[J]. Chinese Journal of Catalysis, ;2014, 35(6): 960-969. doi: 10.1016/S1872-2067(14)60099-1 shu

Catalytic and capacity properties of nanocomposites based on cobalt oxide and nitrogen-doped carbon nanofibers

  • Corresponding author: Olga Yu. Podyacheva, 
  • Received Date: 27 March 2014
    Available Online: 9 April 2014

    Fund Project: This work was supported by RFBR Grant 12-03-01091-a, Presidium RAS (Project 24.51) (Project 24.51) Presidium SB RAS (Project 36, Project 75). (Project 36, Project 75)

  • The nanocomposites based on cobalt oxide and nitrogen-doped carbon nanofibers (N-CNFs) with cobalt oxide contents of 10-90 wt% were examined as catalysts in the CO oxidation and supercapacity electrodes. Depending on Co3O4 content, such nanocomposites have different morphologies of cobalt oxide nanoparticles, distributions over the bulk, and ratios of Co3+/Co2+ cations. The 90%Co3O4-N-CNFs nanocomposite showed the best activity because of the increased concentration of defects in N-CNFs. The capacitance of electrodes containing 10%Co3O4-N-CNFs was 95 F/g, which is 1.7 times higher than electrodes made from N-CNFs.
  • 加载中
    1. [1]

      [1] Casas-Cabanas M, Binotto G, Larcher D, Lecup A, Giordani V, Tarascon J M. Chem Mater, 2009, 21: 1939

    2. [2]

      [2] Li W Y, Xu L N, Chen J. Adv Funct Mater, 2005, 15: 851

    3. [3]

      [3] Farhadi S, Safabakhsh J, Zaringhadam P. J Nanostructure Chem, 2013, 3: 69

    4. [4]

      [4] Wang X, Tian W, Zhai T Y, Zhi C Y, Bando Y, Golberg D. J Mater Chem, 2012, 22: 23310

    5. [5]

      [5] Royer S, Duprez D. ChemCatChem, 2011, 3: 24

    6. [6]

      [6] Jansson J. J Catal, 2000, 194: 55

    7. [7]

      [7] Yu Y B, Takei T, Ohashi H, He H, Zhang X L, Haruta M. J Catal,2009,267: 121

    8. [8]

      [8] Xie X W, Li Y, Liu Z Q, Haruta M, Shen W J. Nature, 2009, 458: 746

    9. [9]

      [9] Ren Y, Ma Z, Qian L P, Dai S, He H Y, Bruce P G. Catal Lett, 2009, 131: 146

    10. [10]

      [10] Jia C J, Schwickardi M, Weidenthaler C, Schmidt W, Korhonen S, Weckhuysen B M, Schüth F. J Am Chem Soc, 2011, 133: 11279

    11. [11]

      [11] Li D B, Liu X H, Zhang Q H, Wang Y, Wan H L. Catal Lett, 2009, 127: 377

    12. [12]

      [12] Tang C W, Wang C B, Chien S H. Catal Lett, 2009, 131: 76

    13. [13]

      [13] Su D S, Perathoner S, Centi G. Chem Rev, 2013, 113: 5782

    14. [14]

      [14] Zhu J, Holmen A, Chen D. ChemCatChem, 2013, 5: 378

    15. [15]

      [15] Su D S, Perathoner S, Centi G. Catal Today, 2012, 186: 1

    16. [16]

      [16] Bitter J H. J Mater Chem, 2010, 20: 7312

    17. [17]

      [17] Antolini E. Appl Catal B, 2009, 88: 1

    18. [18]

      [18] Amadou J, Chizari K, Houlle M, Janowska I, Ersen O, Begin D, Pham-Huu C. Catal Today, 2008, 138: 62

    19. [19]

      [19] Garcia-Garcia F R, Alvarez-Rodriguez J, Rodriguez-Ramos I, Guerrero-Ruiz A. Carbon, 2010, 48: 267

    20. [20]

      [20] Bezemer G L, van Laak A, van Dillen A J, de Jong K P. Stud Surf Sci Catal, 2004, 147: 259

    21. [21]

      [21] Bezemer G L, Radstake P B, Koot V, van Dillen A J, Geus J W, de Jong K P. J Catal, 2006, 237: 291

    22. [22]

      [22] Lim H D, Gwon H, Kim H, Kim S W, Yoon T, Choi J W, Oh S M, Kang K. Electrochim Acta, 2013, 90: 63

    23. [23]

      [23] Lang J W, Yan X B, Xue Q J. J Power Sources, 2011, 196: 7841

    24. [24]

      [24] Ewels C P, Glerup M. J Nanosci Nanotechnol, 2005, 5: 1345

    25. [25]

      [25] Terrones M, Jorio A, Endo M, Rao A M, Kim Y A, Hayashi T, Terrones H, Charlier J C, Dresselhaus G, Dresselhaus M S. Mater Today, 2004, 7(10): 30

    26. [26]

      [26] van Dommele S, de Jong K P, Bitter J H. Chem Commun, 2006: 4859

    27. [27]

      [27] Maldonado S, Morin S, Stevenson K J. Carbon, 2006, 44: 1429

    28. [28]

      [28] Ismagilov Z R, Shalagina A E, Podyacheva O Yu, Ischenko A V, Kibis L S, Boronin A I, Chesalov Y A, Kochubey D I, Romanenko A I, Anikeeva O B, Buryakov T I, Tkachev E N. Carbon, 2009, 47: 1922

    29. [29]

      [29] Podyacheva O Yu, Ismagilov Z R, Boronin A I, Kibis L S, Slavinskaya E M, Noskov A S, Shikina N V, Ushakov V A, Ischenko A V. Catal Today, 2012, 186: 42

    30. [30]

      [30] Shalagina A E, Ismagilov Z R, Podyacheva O Yu, Kvon R I, Ushakov V A. Carbon, 2007, 45: 1808

    31. [31]

      [31] Mateyshina Y, Ulihin A, Samarov A, Barnakov C, Uvarov N. Solid State Ionics, 2013, 251: 59

    32. [32]

      [32] Hutchings K N, Wilson M, Larsen P A, Cutler R A. Solid State Ionics, 2006, 177: 45

    33. [33]

      [33] Radwan N R E, El-Shobaky H G. Thermochim Acta, 2000, 360: 147

    34. [34]

      [34] Dervishi E, Li Z R, Biris A R, Lupu D, Trigwell S, Biris A S. Chem Mater, 2007, 19: 179

    35. [35]

      [35] Dervishi E, Li Z R, Watanabe F, Xu Y, Saini V, Biris A R, Biris A S. J Mater Chem, 2009, 19: 3004

    36. [36]

      [36] Zhang J S, Grzelczak M, Hou Y D, Maeda K, Domen K, Fu X Z, Antoniettu M, Wang X C. Chem Sci, 2012, 3: 443

    37. [37]

      [37] Chuang T J, Brundle C R, Rice D W. Surf Sci, 1976, 59: 413

    38. [38]

      [38] Natile M M, Glisenti A. Chem Mater, 2002, 14: 3090

    39. [39]

      [39] Zhu H W, Razzaq R, Jiang L, Li C S. Catal Commun, 2012, 23: 43

    40. [40]

      [40] Wang S J, Zhang B P, Zhao C H, Li S J, Zhang M X, Yan L P. Appl Surf Sci, 2011, 257: 3358

    41. [41]

      [41] Jiang S J, Song S Q. Appl Catal B, 2013, 140-141: 1

    42. [42]

      [42] Jimenez V M, Fernandez A, Espinos J P, Gonzalez-Elipe A R. J Electron Spectr Rel Phen, 1995, 71: 61

    43. [43]

      [43] Sexton B A, Hughes A E, Turney T W. J Catal, 1986, 97: 390

    44. [44]

      [44] Tang C W, Wang C B, Chien S H. Thermochim Acta, 2008, 473: 68

    45. [45]

      [45] Jacobs G, Ji Y Y, Davis B H, Cronauer D, Kropf A J, Marshall C L. Appl Catal A, 2007, 333: 177

    46. [46]

      [46] Tomic-Tucakovic B, Majstorovic D, Jelic D, Mentus S. Thermochim Acta, 2012, 541: 15

    47. [47]

      [47] Hwang S G, Ryu S H, Yun S R, Ko J M, Kim K M, Ryu K S. Mater Chem Phys, 2011, 130: 507

    48. [48]

      [48] Liu J S, Hu Y, Chuang T L, Huang C L. Thin Solid Films, 2013, 544: 186

    49. [49]

      [49] Jia C J, Liu Y, Bongard H, Schüth F. J Am Chem Soc, 2010, 132: 1520

    50. [50]

      [50] Cunningham D A H, Vogel W, Haruta M. Catal Lett, 1999, 63: 43

    51. [51]

      [51] Liu H L, Wang Y, Gou X L, Qi T, Yang J, Ding Y L. Mater Sci Eng B, 2013, 178: 293

  • 加载中
    1. [1]

      Yanjie LiChaoqun QuSiqi MengJiaqi HuZe GaoHongji XuRui GaoMing Feng . Revealing electronic state evolution of Co(Ⅱ)/Co(Ⅲ) in CoO (111) plane during OER process through magnetic measurement. Chinese Chemical Letters, 2025, 36(3): 109872-. doi: 10.1016/j.cclet.2024.109872

    2. [2]

      Jumei ZhangZiheng ZhangGang LiHongjin QiaoHua XieLing Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278

    3. [3]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    4. [4]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    5. [5]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    6. [6]

      Jiahao XieJin LiuBin LiuXin MengZhuang CaiXiaoqin XuCheng WangShijie YouJinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236

    7. [7]

      Xiujuan WangYijie WangLuyun CuiWenqiang GaoXiao LiHong LiuWeijia ZhouJingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031

    8. [8]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    9. [9]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    10. [10]

      Tianyi YangFangxi SuDehuan ShiShenghong ZhongYalin GuoZhaohui LiuJianfeng Huang . Efficient propane dehydrogenation catalyzed by Ru nanoparticles anchored on a porous nitrogen-doped carbon matrix. Chinese Chemical Letters, 2025, 36(2): 110444-. doi: 10.1016/j.cclet.2024.110444

    11. [11]

      Yan WangJiaqi ZhangXiaofeng WuSibo WangMasakazu AnpoYuanxing Fang . Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts. Chinese Chemical Letters, 2025, 36(2): 110439-. doi: 10.1016/j.cclet.2024.110439

    12. [12]

      Jiaojiao LiangYouming PengZhichao XuYufei WangMenglong LiuXin LiuDi HuangYuehua WeiZengxi Wei . Boron/phosphorus co-doped nitrogen-rich carbon nanofiber with flexible anode for robust sodium-ion battery. Chinese Chemical Letters, 2025, 36(1): 110452-. doi: 10.1016/j.cclet.2024.110452

    13. [13]

      Wenjing Dai Lan Luo Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442

    14. [14]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    15. [15]

      Zhong-Hui SunYu-Qi ZhangZhen-Yi GuDong-Yang QuHong-Yu GuanXing-Long Wu . CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(1): 109590-. doi: 10.1016/j.cclet.2024.109590

    16. [16]

      Shimei WuYining LiLantao ChenYufei ZhangLingxing ZengHaosen Fan . Hexapod cobalt phosphosulfide nanorods encapsulating into multiple hetero-atom doped carbon frameworks for advanced sodium/potassium ion battery anodes. Chinese Chemical Letters, 2025, 36(4): 109796-. doi: 10.1016/j.cclet.2024.109796

    17. [17]

      Husitu LinShuangkun ZhangDianfa ZhaoYongkang WangWei LiuFan YangJianjun LiuDongpeng YanZhanpeng Wu . Flexible polyphosphazene nanocomposite films: Enhancing stability and luminescence of CsPbBr3 perovskite nanocrystals. Chinese Chemical Letters, 2025, 36(4): 109795-. doi: 10.1016/j.cclet.2024.109795

    18. [18]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    19. [19]

      Hao ZhangHaonan QuEhsan Bahojb NoruziHaibing LiFeng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731

    20. [20]

      Tao WeiJiahao LuPan ZhangQi ZhangGuang YangRuizhi YangDaifen ChenQian WangYongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122

Metrics
  • PDF Downloads(0)
  • Abstract views(463)
  • HTML views(56)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return