Citation:
Hao Su, Chun Yang. Selective oxidation of benzyl alcohol catalyzed by (TEAH)nH3-nPW12O40 and its reaction mechanism[J]. Chinese Journal of Catalysis,
;2014, 35(7): 1224-1234.
doi:
10.1016/S1872-2067(14)60097-8
-
Several triethylamine (TEA) salts of phosphotungstic acid were synthesized by an acid-base reaction using a Keggin-type phosphotungstic acid and TEA, and used to catalyze the oxidation of benzyl alcohol to benzaldehyde in water with 30% aqueous hydrogen peroxide as oxidant. (TEAH)nH3-nPW12O40 (n=1, 2, 3) were excellent catalysts for the reaction and could be isolated and recycled. With (TEAH)H2PW12O40, the conversion of benzyl alcohol and selectivity to benzaldehyde were as high as 99.6% and 100%, respectively, under optimized reaction conditions. The catalysts and their transformation and distribution during the reaction were investigated by IR, 31P NMR and analysis of the reaction system, and the reaction mechanism was deduced. In this water-oil biphasic reaction, (PW12O40)3- was first oxidized and degraded into small (PO4(WO(O2)2)4)3- and free tungsten species that were soluble in the aqueous phase upon reaction with H2O2. Then (PO4(WO(O2)2)4)3-, as the actual oxidant, oxidized benzyl alcohol soluble in the aqueous phase to benzaldehyde, and was converted into a SAR (species after reaction) after losing its active oxygen. The catalytic cycle was completed by the polymerization of the SAR with the free tungsten species back to larger catalyst precursor (PW12O40)3-, which was soluble in the oil phase.
-
Keywords:
- Benzyl alcohol,
- Selective oxidation,
- Phosphotungstate,
- Mechanism
-
-
-
[1]
[1] Fan C L, Liu W M. Chem Ind Tmies (樊春玲, 刘文明. 化工时刊), 2008, 22(9): 61
-
[2]
[2] Wu X G, Yin J J, Hu Z J. Special Petrochem (吴鑫干, 尹娟娟, 胡在君. 精细石油化工), 2002, (4): 57
-
[3]
[3] Kholdeeva O A, Maksimchuk N V, Maksimov G M. Catal Today, 2010, 157: 107
-
[4]
[4] Ishii Y, Yamawaki K, Ura T, Yamada H, Yoshida T, Ogawa M. J Org Chem, 1988, 53: 3587
-
[5]
[5] Zhang S J, Zhao G D, Gao S, Xi Z W, Xu J. J Mol Catal A, 2008, 289: 22
-
[6]
[6] Tundo P, Romanelli G P, Vázquez P G, Aricò F. Catal Commun, 2010, 11: 1181
-
[7]
[7] Zhang F M, Guo M P, Ge H Q, Wang J. Chin J Chem Eng, 2007, 15: 895
-
[8]
[8] Zhao P P, Wang J, Chen G J, Zhou Y, Huang J. Catal Sci Technol, 2013, 3: 1394
-
[9]
[9] Ma B C, Zhang Y S, Ding Y, Zhao W. Catal Commun, 2010, 11: 853
-
[10]
[10] Zhao W, Ding Y, Ma B C, Qiu W Y. Synth Commun, 2012, 42: 554
-
[11]
[11] Weng Z H, Wang J Y, Zhang S H, Yan C, Jian X G. Catal Commun, 2008, 10: 125
-
[12]
[12] Manyar H G, Chaure G S, Kumar A. J Mol Catal A, 2006, 243: 244
-
[13]
[13] Weng Z H, Liao G X, Wang J Y, Jian X G. Catal Commun, 2007, 8: 1493
-
[14]
[14] Weng Z H, Wang J Y, Jian X G. Catal Commun, 2008, 9: 1688
-
[15]
[15] Leng Y, Zhao P P, Zhang M J, Wang J. J Mol Catal A, 2012, 358: 67
-
[16]
[16] Zhao M T, Zhou J W, Li Z, Chen J, Xia C G. J Mol Catal (China) (赵美廷, 周剑伟, 李臻, 陈静, 夏春谷. 分子催化), 2011, 25: 97
-
[17]
[17] Tan R, Liu C, Feng N D, Xiao J, Zheng W G, Zheng A M, Yin D H. Microporous Mesoporous Mater, 2012, 158: 77
-
[18]
[18] Liu C, Tan R, Sun W Q, Yin D H. Chin J Catal (刘成, 谭蓉, 孙文庆, 银董红. 催化学报), 2012, 33: 1032
-
[19]
[19] Leng Y, Liu J, Jiang P P, Wang J. RSC Adv, 2012, 2: 11653
-
[20]
[20] Venturello C, D'Aloisio R, Bart J C J, Ricci M. J Mol Catal, 1985, 32: 107
-
[21]
[21] Duncan D C, Chambers R C, Hecht E, Hill C L. J Am Chem Soc, 1995, 117: 681
-
[22]
[22] Aubry C, Chottard G, Platzer N, Brégeault J-M, Thouvenot R, Chauveau F, Huet C, Ledon H. Inorg Chem, 1991, 30: 4409
-
[23]
[23] Salles L, Aubry C, Thouvenot R, Robert F, Dorémieux-Morin C, Chottard G, Ledon H, Jeannin Y, Brégeault J-M. Inorg Chem, 1994, 33: 871
-
[24]
[24] Ishii Y, Yamawaki K, Yoshida T, Ura T, Ogawa M. J Org Chem, 1987, 52: 1868
-
[25]
[25] Dengel A C, Griffith W P, Parkin B C. J Chem Soc, Dalton Trans, 1993: 2683
-
[26]
[26] Yadav G D, Mistry C K. J Mol Catal A, 2001, 172: 135
-
[27]
[27] Gao J B, Chen Y Y, Han B, Feng Z C, Li C, Zhou N, Gao S, Xi Z W. J Mol Catal A, 2004, 210: 197
-
[28]
[28] Kozhevnikov I V, Mulder G P, Steverink-de Zoete M C, Oostwal M G. J Mol Catal A, 1998, 134: 223
-
[1]
-
-
-
[1]
Ling Liu , Haibin Wang , Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080
-
[2]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
-
[3]
Shiyi WANG , Chaolong CHEN , Xiangjian KONG , Lansun ZHENG , Lasheng LONG . Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342
-
[4]
Feng Han , Fuxian Wan , Ying Li , Congcong Zhang , Yuanhong Zhang , Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181
-
[5]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[6]
Wanmin Cheng , Juan Du , Peiwen Liu , Yiyun Jiang , Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066
-
[7]
Jian Jin , Jing Cheng , Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010
-
[8]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[9]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[10]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[11]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[12]
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
-
[13]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[14]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[15]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[16]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[17]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[18]
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
-
[19]
Yi Li , Zhaoxiang Cao , Peng Liu , Xia Wu , Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154
-
[20]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(484)
- HTML views(69)