Citation: Abdol R. Hajipour, Hirbod Karimi. Zirconium phosphate nanoparticles as a remarkable solid acid catalyst for selective solvent-free alkylation of phenol[J]. Chinese Journal of Catalysis, ;2014, 35(7): 1136-1147. doi: 10.1016/S1872-2067(14)60060-7 shu

Zirconium phosphate nanoparticles as a remarkable solid acid catalyst for selective solvent-free alkylation of phenol

  • Corresponding author: Abdol R. Hajipour, 
  • Received Date: 6 December 2013
    Available Online: 20 February 2014

  • A facile synthesis of α-zirconium phosphate (ZP) nanoparticles as an effective, eco-friendly, and recyclable solid acid catalyst is reported. Polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA) were used as organic matrix as dispersing agents and served as a template for the nanoparticles. Hydrogen bonds between ZP and PVA or PVP, along the polymer chains, appear to play an important role for improving the dispersion of in situ formed ZP. Following calcination of PVA/ZP or PVP/ZP, pure hexagonal ZP nanoparticles were obtained. The catalysts were characterized by nitrogen sorption, inductively coupled plasma optical emission spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy, and transmission electron microscopy. Pyridine-FTIR and temperature-programmed desorption of NH3 suggest the presence of Brönsted acid sites. The acidic properties of the catalyst were studied in Friedel-Crafts alkylation of phenol by tert-butanol, producing 2-tert-butylphenol, 4-tert-butylphenol, and 2,4-di-tert-butylphenol. The alkylation reaction was performed in the presence of catalysts P2O5/Al2O3, P2O5/SiO2, α-ZrP (prepared in the absence of the polymers), and various ionic liquids. The use of the hexagonal ZP nanoparticle catalyst afforded an excellent phenol conversion (86%) and selectivity towards 4-tert-butylphenol (83%) under optimized reaction conditions. The catalyst was easily recovered from the reaction mixture, regenerated, and reused at least four times without significant loss in the catalytic activity.
  • 加载中
    1. [1]

      [1] Chandler K, Deng F, Dillow A K, Liotta C L, Eckert C A. Ind Eng Chem Res, 1997, 36: 5175

    2. [2]

      [2] Mehraban Z, Farzaneh F, Ghandi M, Abbasi A. Chin J Catal (催化学报), 2007, 28: 357

    3. [3]

      [3] Wu S J, Huang J H, Wu T H, Song K, Wang H S, Xing L H, Xu H Y, Xu L, Guan J Q, Kan Q B. Chin J Catal (吴淑杰, 黄家辉, 吴通好, 宋科, 王虹苏, 邢丽红, 徐海燕, 徐玲, 管景奇, 阚秋斌. 催化学报), 2006, 27: 9

    4. [4]

      [4] Shinde A B, Shrigadi N B, Samant S D. Appl Catal A, 2004, 276: 5

    5. [5]

      [5] Shen H Y, Judeh Z M A, Ching C B, Xia Q H. J Mol Catal A, 2004, 212: 301

    6. [6]

      [6] Dumitriu E, Hulea V. J Catal, 2003, 218: 249

    7. [7]

      [7] Venkatachalam K, Visuvamithiran P, Sundaravel B, Palanichamy M, Murugesan V. Chin J Catal (催化学报), 2012, 33: 478

    8. [8]

      [8] Sakthivel A, Badamali S K, Selvam P. Microporous Mesoporous Mater, 2000, 39: 457

    9. [9]

      [9] Ghiaci M, Aghabarari B. Chin J Catal (催化学报), 2010, 31: 759

    10. [10]

      [10] Usha Nandhini K, Herbert Mabel J, Arabindoo B, Palanichamy M, Murugesan V. Microporous Mesoporous Mater, 2006, 96: 21

    11. [11]

      [11] Wang Y L, Song Y Y, Huo W T, Jia M J, Jing X Y, Yang P P, Yang Z, Liu G, Zhang W X. Chem Eng J, 2012, 181-182: 630

    12. [12]

      [12] Modrogan E, Valkenberg M H, Hoelderich W F. J Catal, 2009, 261: 177

    13. [13]

      [13] Chandra K G, Sharma M M. Catal Lett, 1993, 19: 309

    14. [14]

      [14] Mathew T, Rao B S, Gopinath C S. J Catal, 2004, 222: 107

    15. [15]

      [15] Vinu A, Devassy B M, Halligudi S B, Böhlmann W, Hartmann M. Appl Catal A, 2005, 281: 207

    16. [16]

      [16] Bhatt N, Sharma P, Patel A, Selvam P. Catal Commun, 2008, 9: 1545

    17. [17]

      [17] Gui J Z, Ban H Y, Cong X H, Zhang X T, Hu Z D, Sun Z L. J Mol Catal A, 2005, 225: 27

    18. [18]

      [18] Vinu A, Nandhini K U, Murugesan V, Böhlmann W, Umamaheswari V, Pöppl A, Hartmann M. Appl Catal A, 2004, 265: 1

    19. [19]

      [19] Sears C A Jr. J Org Chem, 1948, 13: 120

    20. [20]

      [20] Elavarasan P, Kondamudi K, Upadhyayula S. Chem Eng J, 2011, 166: 340

    21. [21]

      [21] Clark J H. Acc Chem Res, 2002, 35: 791

    22. [22]

      [22] Kumar G S, Vishnuvarthan M, Palanichamy M, Murugesan V. J Mol Catal A, 2006, 260: 49

    23. [23]

      [23] Devassy B M, Shanbhag G V, Halligudi S B. J Mol Catal A, 2006, 247: 162

    24. [24]

      [24] Subramanian S, Mitra A, Satyanarayana C V V, Chakrabarty D K. Appl Catal A, 1997, 159: 229

    25. [25]

      [25] Sakthivel A, Saritha N, Selvam P. Catal Lett, 2001, 72: 225

    26. [26]

      [26] Haldar S, Koner S. J Org Chem, 2010, 75: 6005

    27. [27]

      [27] Sun L, Boo W J, Sue H J, Clearfield A. New J Chem, 2007, 31: 39

    28. [28]

      [28] Sun L, Boo W J, Browning R L, Sue H J, Clearfield A. Chem Mater, 2005, 17: 5606

    29. [29]

      [29] Trobajo C, Khainakov S A, Espina A, García J R. Chem Mater, 2000, 12: 1787

    30. [30]

      [30] Shuai M, Mejia A F, Chang Y W, Cheng Z D. CrystEngComm, 2013, 15: 1970

    31. [31]

      [31] Mishra S P, Tiwari D, Prasad S K, Dubey R S, Mishra M. J Radioanal Nucl Chem, 2006, 268: 191

    32. [32]

      [32] Kremlyakova N Y, Komarevsky V M. J Radioanal Nucl Chem, 1997, 218: 197

    33. [33]

      [33] Kamiya Y, Sakata S, Yoshinaga Y, Ohnishi R, Okuhara T. Catal Lett, 2004, 94: 45

    34. [34]

      [34] Sinhamahapatra A, Sutradhar N, Pahari S, Bajaj H C, Panda A B. Appl Catal A, 2011, 394: 93

    35. [35]

      [35] Sinhamahapatra A, Sutradhar N, Roy B, Pal P, Bajaj H C, Panda A B. Appl Catal B, 2011, 103: 378

    36. [36]

      [36] Sinhamahapatra A, Sutradhar N, Roy B, Tarafdar A, Bajaj H C, Panda A B. Appl Catal A, 2010, 385: 22

    37. [37]

      [37] Sinhamahapatra A, Sinha A, Pahari S K, Sutradhar N, Bajaj H C, Panda A B. Catal Sci Technol, 2012, 2: 2375

    38. [38]

      [38] Zhang F Z, Xie Y R, Lu W, Wang X Y, Xu S L, Lei X D. J Colloid Interf Sci, 2010, 349: 571

    39. [39]

      [39] Díaz A, David A, Pérez R, González M L, Báez A, Wark S E, Zhang P, Clearfield A, Colón J L. Biomacromolecules, 2010, 11: 2465

    40. [40]

      [40] Saxena V, Diaz A, Clearfield A, Batteas J D, Hussain M D. Nanoscale, 2013, 5: 2328

    41. [41]

      [41] Díaz A, Saxena V, González J, David A, Casańas B, Carpenter C, Batteas J D, Colón J L, Clearfield A, Hussain M D. Chem Commun, 2012, 48: 1754

    42. [42]

      [42] Kumar C V, Chaudhari A. J Am Chem Soc, 2000, 122: 830

    43. [43]

      [43] Feng Y J, He W, Zhang X D, Jia X T, Zhao H S. Mater Lett, 2007, 61: 3258

    44. [44]

      [44] Gupta V K, Pathania D, Singh P, Rathore B S, Chauhan P. Carbohydrate Polym, 2013, 95: 434

    45. [45]

      [45] Wei S Y, Lizu M, Zhang X, Sampathi J, Sun L Y, Milner M F. High Perform Polym, 2013, 25: 25

    46. [46]

      [46] Yang Y J, Liu C H, Chang P R, Chen Y, Anderson D P, Stumborg M. J Appl Polym Sci, 2010, 115: 1089

    47. [47]

      [47] Lu H D, Wilkie C A, Ding M, Song L. Polym Degrad Stab, 2011, 96: 1219

    48. [48]

      [48] Dana S F, Nguyen D V, Kochhar J S, Liu X Y, Kang L F. Soft Matter, 2013, 9: 6270

    49. [49]

      [49] Topkaya R, Kurtan U, Baykal A, Toprak M S. Ceram Int, 2013, 39: 5651

    50. [50]

      [50] Wang Z H, Tao D L, Guo G S, Jin S, Wei F, Qian W Z, Hong S, Guo J. Mater Lett, 2006, 60: 3104

    51. [51]

      [51] Adam F, Hello K M, Ali T H. Appl Catal A, 2011, 399: 42

    52. [52]

      [52] Zhao Q, Wang Q, Wu D L, Fu X Q, Jiang T S, Yin H B. J Ind Eng Chem, 2012, 18: 1326

    53. [53]

      [53] Hajipour A R, Azizi G. Green Chem, 2013, 15: 1030

    54. [54]

      [54] Hajipour A R, Zarei A, Khazdooz L, Pourmousavi S A, Mirjalili B B F, Ruoho A E. Phosphorus, Sulfur Silicon Relat Elem, 2005, 180: 2029

    55. [55]

      [55] Zarei A, Hajipour A R, Khazdooz L. Tetrahedron Lett, 2008, 49: 6715

    56. [56]

      [56] Hajipour A R, Khazdooz L, Ruoho A E. Catal Commun, 2008, 9: 89

    57. [57]

      [57] Hajipour A R, Nasresfahani Z. Synth Commun, 2012, 42: 1995

    58. [58]

      [58] Hajipour A R, Ghayeb Y, Sheikhan N, Ruoho A E. Tetrahedron Lett, 2009, 50: 5649

    59. [59]

      [59] Kirumakki S R, Nagaraju N, Chary K V R, Narayanan S. J Catal, 2004, 221: 549

    60. [60]

      [60] Venuto P B. Microporous Mater, 1994, 2: 297

    61. [61]

      [61] Sridevi U, Bhaskar Rao B K, Pradhan N C. Chem Eng J, 2001, 83: 185

    62. [62]

      [62] Becker K A, Karge H G, Streubel W D. J Catal, 1973, 28: 403

    63. [63]

      [63] Sing K S, Everett D H, Haul R A W, Pierotti R A, Rouquerol J, Siemieniewska T. Pure Appl Chem, 1985, 57: 603

    64. [64]

      [64] Segawa K, Nakata S, Asaoka S. Mater Chem Phys, 1987, 17: 181

    65. [65]

      [65] Tarafdar A, Panda A B, Pradhan N C, Pramanik P. Microporous Mesoporous Mater, 2006, 95: 360

    66. [66]

      [66] Tyagi B, Chudasama C D, Jasra R V. Appl Clay Sci, 2006, 31: 16

    67. [67]

      [67] Corma A. Chem Rev, 1995, 95: 559

    68. [68]

      [68] Segawa K i, Kurusu Y, Nakajima Y, Kinoshita M. J Catal, 1985, 94: 491

    69. [69]

      [69] Tahara S, Takakura Y, Sugahara Y. Chem Lett, 2012, 41: 555

    70. [70]

      [70] Yang X S, Chen X, Yang L, Yang W S. Bioelectrochemistry, 2008, 74: 90

    71. [71]

      [71] Reddy K S N, Rao B S, Shiralkar V P. Appl Catal A, 1993, 95: 53

    72. [72]

      [72] Luque R, Budarin V, Clark J H, Shuttleworth P, White R J. Catal Commun, 2011, 12: 1471

    73. [73]

      [73] Graça I, Fernandes A, Lopes J M, Ribeiro M F, Laforge S, Magnoux P, Ramôa Ribeiro F. Appl Catal A, 2010, 385: 178

    74. [74]

      [74] Yadav G D, Nair J J. Microporous Mesoporous Mater, 1999, 33: 1

    75. [75]

      [75] Iglesia E, Soled S L, Kramer G M. J Catal, 1993, 144: 238

    76. [76]

      [76] Zhang K, Huang C, Zhang H, Xiang S, Liu S, Xu D, Li H. Appl Catal A, 1998, 166: 89

    77. [77]

      [77] Bhatt N, Patel A. J Taiwan Inst Chem Eng, 2011, 42: 356

    78. [78]

      [78] Parton R F, Jacobs J M, Huybrechts D R, Jacobs P A. Shape-Selective Catalysis in Zeolites with Organic Substrates Containing Oxygen. Amsterdam: Elsevier, 1989. 163

    79. [79]

      [79] Devassy B M, Shanbhag G V, Mirajkar S P, Böhringer W, Fletcher J, Halligudi S B. J Mol Catal A, 2005, 233: 141

  • 加载中
    1. [1]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    2. [2]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    3. [3]

      Shuang LiangJianjun YaoDan LiuMengli ZhouYong CuiZhaohui Wang . Tumor-responsive covalent organic polymeric nanoparticles enhancing STING activation for cancer immunotherapy. Chinese Chemical Letters, 2025, 36(3): 109856-. doi: 10.1016/j.cclet.2024.109856

    4. [4]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    5. [5]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    6. [6]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

    7. [7]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    8. [8]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    9. [9]

      Wenlong LiFeishi ShanQingdong BaoQinghua LiHua GaoLeyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060

    10. [10]

      Xinxiu YanXizhe HuangYangyang LiuWeishang JiaHualin ChenQi YaoTao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426

    11. [11]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    12. [12]

      Botao QUQian WANGXiaogang NINGYuxin ZHOURuiping ZHANG . Deeply penetrating photoacoustic imaging in tumor tissues based on dual-targeted melanin nanoparticle. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1025-1032. doi: 10.11862/CJIC.20230416

    13. [13]

      Shenglan ZhouHaijian LiHongyi GaoAng LiTian LiShanshan ChengJingjing WangJitti KasemchainanJianhua YiFengqi ZhaoWengang Qu . Recent advances in metal-loaded MOFs photocatalysts: From single atom, cluster to nanoparticle. Chinese Chemical Letters, 2025, 36(1): 110142-. doi: 10.1016/j.cclet.2024.110142

    14. [14]

      Xueqi ZhangHan GaoJianan XuMin Zhou . Polyelectrolyte-functionalized carbon nanocones enable rapid and accurate analysis of Ag nanoparticle colloids. Chinese Chemical Letters, 2025, 36(4): 110148-. doi: 10.1016/j.cclet.2024.110148

    15. [15]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    16. [16]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    17. [17]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    18. [18]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    19. [19]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    20. [20]

      Li LiZhi-Xin YanChuan-Kun RanYi LiuShuo ZhangTian-Yu GaoLong-Fei DaiLi-Li LiaoJian-Heng YeDa-Gang Yu . Electro-reductive carboxylation of CCl bonds in unactivated alkyl chlorides and polyvinyl chloride with CO2. Chinese Chemical Letters, 2024, 35(12): 110104-. doi: 10.1016/j.cclet.2024.110104

Metrics
  • PDF Downloads(0)
  • Abstract views(387)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return