Citation: Bahaa M. Abu-Zied, Soliman A. Soliman, Sarah E. Abdellah. Pure and Ni-substituted Co3O4 spinel catalysts for direct N2O decomposition[J]. Chinese Journal of Catalysis, ;2014, 35(7): 1105-1112. doi: 10.1016/S1872-2067(14)60058-9 shu

Pure and Ni-substituted Co3O4 spinel catalysts for direct N2O decomposition

  • Corresponding author: Bahaa M. Abu-Zied, 
  • Received Date: 10 December 2013
    Available Online: 10 February 2014

  • A series of NixCo1-xCo2O4 (0 ≤ x ≤ 1) spinel catalysts were prepared by the co-precipitation method and used for direct N2O decomposition. The decomposition pathway of the parent precipitates was characterized by thermal analysis. The catalysts were calcined at 500℃ for 3 h and characterized by powder X-ray diffraction, Fourier transform infrared, and N2 adsorption-desorption. Nickel cobaltite spinel was formed in the solid state reaction between NiO and Co3O4. The N2O decomposition measurement revealed significant increase in the activity of Co3O4 spinel oxide catalyst with the partial replacement of Co2+ by Ni2+. The activity of this series of catalysts was controlled by the degree of Co2+ substitution by Ni2+, spinel crystallite size, catalyst surface area, presence of residual K+, and calcination temperature.
  • 加载中
    1. [1]

      [1] Obalová L, Jirátová K, Karásková K, Kovanda F. Chin J Catal (催化学报), 2011, 32: 816

    2. [2]

      [2] Kapteijn F, Rodriguez-Mirasol J, Moulijn J A. Appl Catal B, 1996, 9: 25

    3. [3]

      [3] Trogler W C. Coord Chem Rev, 1999, 187: 303

    4. [4]

      [4] Shimizu A, Tanaka K, Fujimori M. Chemosphere-Global Change Sci, 2000, 2: 425

    5. [5]

      [5] Haber J, Nattich M, Machej T. Appl Catal B, 2008, 77: 278

    6. [6]

      [6] Abu-Zied B M. Appl Catal A, 2008, 334: 234

    7. [7]

      [7] Satsuma A, Maeshima H, Watanabe K, Suzuki K, Hattori T. Catal Today, 2000, 63: 347

    8. [8]

      [8] Asano K, Ohnishi C, Iwamoto S, Shioya Y, Inoue M. Appl Catal B, 2008, 78: 242

    9. [9]

      [9] Bennici S, Gervasini A. Appl Catal B, 2006, 62: 336

    10. [10]

      [10] Boissel V, Tahir S, Koh C A. Appl Catal B, 2006, 64: 234

    11. [11]

      [11] Perez-Ramírez J, Kapteijn F, Schöffel K, Moulijn J A. Appl Catal B, 2003, 44: 117

    12. [12]

      [12] Abu-Zied B M, Schwieger W, Unger A. Appl Catal B, 2008, 84: 277

    13. [13]

      [13] Abu-Zied B M. Micropor Mesoporous Mater, 2011, 139: 59

    14. [14]

      [14] Ul-Ain B, Ahmed S, Huang Y Q. Chin J Catal (催化学报), 2013, 34: 1357

    15. [15]

      [15] Liu S, Cong Y, Kappenstein C, Zhang T. Chin J Catal (催化学报), 2012, 33: 907

    16. [16]

      [16] Russo N, Mescia D, Fino D, Saracco G, Specchia V. Ind Eng Chem Res, 2007, 46: 4226

    17. [17]

      [17] Obalová L, Fíla V. Appl Catal B, 2007, 70: 353

    18. [18]

      [18] Cheng H K, Huang Y Q, Wang A Q, Li L, Wang X D, Zhang T. Appl Catal B, 2009, 89: 391

    19. [19]

      [19] Yan L, Ren T, Wang X L, Ji D, Suo J S. Appl Catal B, 2003, 45: 85

    20. [20]

      [20] Yan L, Ren T, Wang X L, Gao Q, Ji D, Suo J S. Catal Comm, 2003, 4: 505

    21. [21]

      [21] Russo N, Fino D, Saracco G, Specchia V. Catal Today, 2007, 119: 228

    22. [22]

      [22] Abu-Zied B M. Chin J Catal (催化学报), 2011, 32: 264

    23. [23]

      [23] Oku M, Sato Y. Appl Surf Sci, 1992, 55: 37

    24. [24]

      [24] Xu Z P, Zeng H C. J Mater Chem, 1998, 8: 2499

    25. [25]

      [25] Qian M, Zeng H C. J Mater Chem, 1997, 7: 493

    26. [26]

      [26] Tavares A C, Cartaxo M A M, da Silva Pereira M I, Costa F M. J Electroanal Chem, 1999, 464: 187

    27. [27]

      [27] Kim J G, Pugmire D L, Battaglia D, Langell M A. Appl Surf Sci, 2000, 165: 70

    28. [28]

      [28] Ma Z, Ren Y, Lu Y B, Bruce P G. J Nanosci Nanotechnol, 2013, 13: 5093

    29. [29]

      [29] Xue L, Zhang C B, He H, Teraoka Y. Appl Catal B, 2007, 75: 167

    30. [30]

      [30] Abu-Zied B M, Soliman S A. Catal Lett, 2009, 132: 299

    31. [31]

      [31] Basahel S N, Abd El-Maksod I H, Abu-Zied B M, Mokhtar M. J Alloys Compd, 2010, 493; 630

    32. [32]

      [32] Mansour S A A. Thermochim Acta, 1993, 228: 155

    33. [33]

      [33] Chi B, Li J B, Han Y S, Chen Y J. Int J Hydrogen Energy, 2004, 29: 605

    34. [34]

      [34] Lapham D P, Tseung A C C. J Mater Sci, 2004, 39: 251

    35. [35]

      [35] Cabo M, Pellicer E, Rossinyol E, Castell O, Surinach S, Baro M D. Cryst Growth Des, 2009, 9: 4814

    36. [36]

      [36] Fujishiro Y, Hamamoto K, Shiono O, Katayama S, Awano M. J Mater Sci׃ Mater Electronics, 2004, 15: 769

    37. [37]

      [37] Zhan S H, Chen D R, Jiao X L, Liu S S. J Colloid Interf Sci, 2007, 308: 265

    38. [38]

      [38] Guo Q S, Guo X Y, Tian Q H. Adv Powder Technol, 2010, 21: 529

    39. [39]

      [39] Leofanti G, Padovan M, Tozzola G, Venturelli B. Catal Today, 1998, 41: 207

    40. [40]

      [40] Sundararajan R, Srinivasan V. Appl Catal A, 1996, 141: 45

  • 加载中
    1. [1]

      Yanjie LiChaoqun QuSiqi MengJiaqi HuZe GaoHongji XuRui GaoMing Feng . Revealing electronic state evolution of Co(Ⅱ)/Co(Ⅲ) in CoO (111) plane during OER process through magnetic measurement. Chinese Chemical Letters, 2025, 36(3): 109872-. doi: 10.1016/j.cclet.2024.109872

    2. [2]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    3. [3]

      Yutong Liu Xuemin Jing . Research Progress on the Catalytic Conversion of Methane in the Context of the “Dual Carbon” Goals. University Chemistry, 2025, 40(10): 101-113. doi: 10.12461/PKU.DXHX202412018

    4. [4]

      Qiang WuBaofeng Wang . Exploring synthetic strategy for stabilizing nickel-rich layered oxide cathodes through structural design. Chinese Chemical Letters, 2024, 35(12): 110089-. doi: 10.1016/j.cclet.2024.110089

    5. [5]

      Wenxuan YangLong ShangXiaomeng LiuSihan ZhangHaixia LiZhenhua YanJun Chen . Ultrafast synthesis of nanocrystalline spinel oxides by Joule-heating method. Chinese Chemical Letters, 2024, 35(11): 109501-. doi: 10.1016/j.cclet.2024.109501

    6. [6]

      Wenjing Dai Lan Luo Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442

    7. [7]

      Zili Ma Zeyu Li Jun Lv . Shortening the formation time of oxide thin film photoelectrodes from hours to seconds. Chinese Journal of Structural Chemistry, 2025, 44(4): 100450-100450. doi: 10.1016/j.cjsc.2024.100450

    8. [8]

      Chen-Xin WangGuang-Lei LiYu HangDan-Feng LuJian-Qi YeHao SuBing HouTao SuoDan Wen . Shock-resistant wearable pH sensor based on tungsten oxide aerogel. Chinese Chemical Letters, 2025, 36(7): 110502-. doi: 10.1016/j.cclet.2024.110502

    9. [9]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    10. [10]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    11. [11]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    12. [12]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

    13. [13]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    14. [14]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    15. [15]

      Long LiKang YangChenpeng XiMengchao LiBorong LiGui XuYuanbin XiaoXiancai CuiZhiliang LiuLingyun LiYan YuChengkai Yang . Highly-chlorinated inert and robust interphase without mineralization of oxide enhancing high-rate Li metal batteries. Chinese Chemical Letters, 2024, 35(6): 108814-. doi: 10.1016/j.cclet.2023.108814

    16. [16]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    17. [17]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    18. [18]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    19. [19]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

    20. [20]

      Jincheng ZhangMengjie SunJiali RenRui ZhangMin MaQingzhong XueJian Tian . Oxygen vacancies-rich molybdenum tungsten oxide nanowires as a highly active nitrogen fixation electrocatalyst. Chinese Chemical Letters, 2025, 36(1): 110491-. doi: 10.1016/j.cclet.2024.110491

Metrics
  • PDF Downloads(0)
  • Abstract views(652)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return