Citation: Yanggang Wang, Xiaofeng Yang, Linhua Hu, Yadong Li, Jun Li. Theoretical study of the crystal plane effect and ion-pair active center for C-H bond activation by Co3O4 nanocrystals[J]. Chinese Journal of Catalysis, ;2014, 35(4): 462-467. doi: 10.1016/S1872-2067(14)60043-7 shu

Theoretical study of the crystal plane effect and ion-pair active center for C-H bond activation by Co3O4 nanocrystals

  • Corresponding author: Jun Li, 
  • Received Date: 29 December 2013
    Available Online: 20 January 2014

    Fund Project: 国家纳米科技基础研究重大项目(2011CB932401) (2011CB932401)国家自然科学基金(21221062, 10979031). (21221062, 10979031)

  • Methane has attracted extensive interest in recent years due to its potential application as a replacement of oil and a feedstock for valuable chemicals. Due to the large C-H bond energy, the conversion of methane into useful products has been a challenge. In the present study, density functional theory (DFT) calculations were performed to study the activation of the C-H bond of methane on the (001) and (011) planes of Co3O4, which showed that CH4 activation on Co3O4 nanocrystals was fairly easy with only small energy barriers (less than 1.1 eV). Surface Co-O ion pairs are the active site for C-H bond activation, where the two ions provide a synergistic effect for the activation of the strong C-H bond and yield surface Co-CH3 and O-H species. The Co3O4(011) surface is shown to be more reactive for C-H bond activation than the Co3O4(001) surface, which is consistent with previous experimental results. Our results suggest that methane oxidation on Co3O4 nanocrystals has strong crystal plane effect and structure sensitivity and the ion-pair active center plays a significant role in activating the strong C-H bond.
  • 加载中
    1. [1]

      [1] Crabtree R H. Chem Rev, 1995, 95: 987

    2. [2]

      [2] Copéret C. Chem Rev, 2010, 110: 656

    3. [3]

      [3] Enger B C, Lödeng R, Holmen A. Appl Catal A, 2008, 346: 1

    4. [4]

      [4] Wang X, Zhuang J, Peng Q, Li Y D. Nature, 2005, 437: 121

    5. [5]

      [5] Somorjai G A, Tao F, Park J Y. Top Catal, 2008, 47: 1

    6. [6]

      [6] Tian N, Zhou Z Y, Sun S G, Ding Y, Wang Z L. Science, 2007, 316: 732

    7. [7]

      [7] Van Santen R A. Acc Chem Res, 2009, 42: 57

    8. [8]

      [8] Xie X W, Li Y, Liu Z Q, Haruta M, Shen W J. Nature, 2009, 458: 746

    9. [9]

      [9] Liu X W, Zhou K B, Wang L, Wang B Y, Li Y D. J Am Chem Soc, 2009, 131: 3140

    10. [10]

      [10] Wang Y G, Yoon Y, Glezakou V A, Li J, Rousseau R. J Am Chem Soc, 2013, 135: 10673

    11. [11]

      [11] Wang Y G, Mei D H, Li J, Rousseau R. J Phys Chem C, 2013, 117: 23082

    12. [12]

      [12] Liotta L F, Carlo G D, Pantaleo G, Deganello G. Catal Commun, 2005, 6: 329

    13. [13]

      [13] Liotta L F, Carlo G D, Pantaleo G, Veneziaa A M, Deganello G, Merlone Borla E, Pidriac M F. Top Catal, 2007, 42-43: 425

    14. [14]

      [14] Liotta L F, Carlo G D, Pantaleo G, Deganello G. Appl Catal B, 2007, 70: 314

    15. [15]

      [15] Hu L H, Peng Q, Li Y D. J Am Chem Soc, 2008, 130: 16136

    16. [16]

      [16] Hu L H, Sun K Q, Peng Q, Xu B Q, Li Y D. Nano Res, 2010, 3: 363

    17. [17]

      [17] Beaufils J P, Barbaux Y. J Appl Cryst, 1982, 15: 301

    18. [18]

      [18] Ziólkowski J, Barbaux, Y. J Mol Catal, 1991, 67: 199

    19. [19]

      [19] Jansson J. J Catal, 2000, 194: 55

    20. [20]

      [20] Broqvist P, Panas I, Persson H. J Catal, 2002, 210: 198

    21. [21]

      [21] Grillo F, Natil M M, Glisenti A. Appl Catal B, 2004, 48: 267

    22. [22]

      [22] Petitto S C, Marsh E M, Carson G A, Langell M A. J Mol Catal A, 2008, 281: 49

    23. [23]

      [23] Delley B. J Chem Phys 1990, 92: 508

    24. [24]

      [24] Delley B. J Phys Chem, 1996, 100: 6107

    25. [25]

      [25] Delley B. J Chem Phys, 2000, 113: 7756

    26. [26]

      [26] Perdew J P, Burke K, Ernzerhof M. Phys Rev Lett, 1996, 77: 3865

    27. [27]

      [27] Govind N, Petersen M, Fitzgerald G, King-Smith D, Andzelm J. Comput Mater Sci, 2003, 28: 250

    28. [28]

      [28] Xu X L, Chen Z H, Li Y, Chen W K, Li J Q. Surf Sci, 2009, 603: 653

    29. [29]

      [29] Zasada F, Stelmachowski P, Maniak G, Paul J F, Kotarba A, Sojka Z. Catal Lett, 2009, 127: 126

    30. [30]

      [30] Walsh A, Wei S H, Yan Y, Al-Jassim M M, Turner J A, Woodhouse M, Parkinson B A. Phys Rev B, 2007, 76: 165119

    31. [31]

      [31] Jiang D, Dai S. Phys Chem Chem Phys, 2011, 13: 978

    32. [32]

      [32] Dutta P, Seehra M S, Thota S, Kumar J. J Phys-Condens Mat, 2008, 20: 015218

    33. [33]

      [33] Roth W L. J Phys Chem Solids, 1964, 25: 1

    34. [34]

      [34] Patil P S, Kadam L D, Lokhande C D. Thin Solid Films, 1996, 272: 29

    35. [35]

      [35] Cheng C S, Serizawa M, Sakata H, Hirayama T. Mater Chem Phys, 1998, 53: 225

    36. [36]

      [36] Barreca D, Massignan C, Daolio S, Fabrizio M, Piccirillo C, Armelao L, Tondello E. Chem Mater, 2001, 13: 588

    37. [37]

      [37] Gulino A, Fragala I. Inorg Chim Acta, 2005, 358: 4466

    38. [38]

      [38] Psofogiannakis G, St-Amant A, Ternan M. J Phys Chem B, 2006, 110: 24593

    39. [39]

      [39] Wang C C, Wu J Y, Jiang J C. J Phys Chem C, 2013, 117, 6136

    40. [40]

      [40] Molinari M, Parker S C, Sayle D C, Islam M S. J Phys Chem C, 2012, 116: 7073

  • 加载中
    1. [1]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    2. [2]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    3. [3]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    4. [4]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    5. [5]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    6. [6]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    7. [7]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    8. [8]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    9. [9]

      Tingting Jiang Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007

    10. [10]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    11. [11]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    12. [12]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    13. [13]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    14. [14]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    15. [15]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    16. [16]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    17. [17]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    18. [18]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    19. [19]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    20. [20]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

Metrics
  • PDF Downloads(478)
  • Abstract views(770)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return