Citation: Nader Ghaffari Khaligh. Four-component one-pot synthesis of unsymmetrical polyhydroquinoline derivatives using 3-methyl-1-sulfonic acid imidazolium hydrogen sulfate as a catalyst[J]. Chinese Journal of Catalysis, ;2014, 35(7): 1036-1042. doi: 10.1016/S1872-2067(14)60038-3 shu

Four-component one-pot synthesis of unsymmetrical polyhydroquinoline derivatives using 3-methyl-1-sulfonic acid imidazolium hydrogen sulfate as a catalyst

  • Corresponding author: Nader Ghaffari Khaligh, 
  • Received Date: 12 December 2013
    Available Online: 15 January 2014

  • 3-Methyl-1-sulfonic acid imidazolium hydrogen sulfate has been used as an efficient, halogen-free, and reusable Brönsted acidic ionic liquid catalyst for the synthesis of ethyl-4-aryl/heteryl-hexahydro-trimehtyl-5-oxoquinoline-3-carboxylates via the one-pot condensation of dimedone with aryl/heteryl aldehydes, ethyl acetoacetate, and ammonium acetate under solvent-free conditions. This method has the advantage of being clean and simple, as well as providing the desired product in high yield over a short reaction time. Furthermore, the catalyst could be recycled and reused four times without any discernible reduction in activity.
  • 加载中
    1. [1]

      [1] Brock E D, Lewis D M, Yousaf T I, Harper H H. WO Patent 9951688. 1999

    2. [2]

      [2] Sakata G, Makino K, Karasawa Y. Heterocycles 1988, 27: 2481

    3. [3]

      [3] Demeunynck M, Moucheron C, Mesmaeker A K D. Tetrahedron Lett, 2002, 43: 261

    4. [4]

      [4] Ali M M, Tasneem T, Rajanna K C, Prakash P K S. Synlett, 2001: 251

    5. [5]

      [5] Cho C S, Kim B T, Kim T J, Shim S C. Chem Commun, 2001: 2576

    6. [6]

      [6] Crousse B, Begue J P, Bonnet-Delpon D. J Org Chem, 2000, 65: 5009

    7. [7]

      [7] Lin X F, Cui S L, Wang Y G. Tetrahedron Lett, 2006, 47: 4509

    8. [8]

      [8] Beagley P, Blackie M A L, Chibale K, Clarkson C, Meijboom R, Moss J R, Smith P J, Su H. Dalton Trans, 2003: 3046

    9. [9]

      [9] Sawada Y, Kayakiri H, Abe Y, Mizutani T, Inamura N, Asano M, Hatori C, Aramori I, Oku T, Tanaka H. J Med Chem, 2004, 47: 2853

    10. [10]

      [10] Ma Z Z, Hano Y, Nomura T, Chen Y J. Bioorg Med Chem Lett, 2004, 14: 1193

    11. [11]

      [11] Denton T T, Zhang X D, Cashman J R. J Med Chem, 2005, 48: 224

    12. [12]

      [12] Fokialakis N, Magiatis P, Chinou I, Mitaku S, Tillequin F. Chem Pharm Bull, 2002, 50: 413

    13. [13]

      [13] Fossa P, Mosti L, Menozzi G, Marzano C, Baccichetti F, Bordin F. Bioorg Med Chem, 2002, 10: 743

    14. [14]

      [14] Ryckebusch A, Deprez-Poulain R, Maes L, Debreu-Fontaine M A, Mouray E, Grellier P, Sergheraert C. J Med Chem, 2003, 46: 542

    15. [15]

      [15] Morgan L R, Jursic B S, Hooper C L, Neumann D M, Thangaraj K, LeBlanc B. Bioorg Med Chem Lett, 2002, 12: 3407

    16. [16]

      [16] Kouznetsov V V. Tetrahedron, 2009, 65: 2721

    17. [17]

      [17] Haghighi M G, Rashidi M, Nabavizadeh S M, Jamali S, Puddephatt R J. Dalton Trans, 2010, 39: 11396

    18. [18]

      [18] Baratta W, Fanfoni L, Magnolia S, Siega K, Rigo P. Eur J Inorg Chem, 2010: 1419

    19. [19]

      [19] Mauzerall D, Westheimer F H. J Am Chem Soc, 1955, 77: 2261

    20. [20]

      [20] Godfraind T, Miller R, Mibo M. Pharmacol Rev, 1986, 38: 321

    21. [21]

      [21] Stout D M, Meyers A I. Chem Rev, 1982, 82: 223

    22. [22]

      [22] Janis R A, Triggle D J. J Med Chem, 1983, 26: 775

    23. [23]

      [23] Bossert F, Mayer H, Wehinger E. Angew Chem Int Ed, 1981, 20: 762

    24. [24]

      [24] Toussaint C, De Pauw L, Vienne A, Gevenois P A, Quintin J, Gelin M, Pasteels J L. Am J Kidney Dis, 1993, 21: 54

    25. [25]

      [25] Kawase M, Shah A, Gaveriya H, Motohashi N, Sakagami H, Varga A, Molnar J. Bioorg Med Chem, 2002, 10: 1051

    26. [26]

      [26] Ladani N K, Mungra D C, Patel M P, Patel R G. Chin Chem Lett, 2011, 22: 1407

    27. [27]

      [27] Wang S X, Li Z Y, Zhang J C, Li J T. Ultrason Sonochem, 2008, 15: 677

    28. [28]

      [28] Wang L M, Sheng J, Zhang L, Han J W, Fan Z Y, Tian H, Qian C T. Tetrahedron, 2005, 61: 1539

    29. [29]

      [29] Kumar A, Maurya R A. Tetrahedron, 2007, 63: 1946

    30. [30]

      [30] Undale K A, Shaikh T S, Gaikwad D S, Pore D M. C R Chim, 2011, 14: 511

    31. [31]

      [31] Ji S J, Jiang Z Q, Lu J, Loh T P. Synlett, 2004: 831

    32. [32]

      [32] Maheswara M, Siddaiah V, Damu V G L, Rao C V. Arkivoc, 2006: 201

    33. [33]

      [33] Sapkal S B, Shelke K F, Shingate B B, Shingare M S. Tetrahedron Lett, 2009, 50: 1754

    34. [34]

      [34] Katkar S S, Mohite P H, Gadekar L S, Arbad B R, Lande M K. Green Chem Lett Rev, 2010, 3: 287

    35. [35]

      [35] Safari J, Banitaba S H, Khalili S D. J Mol Catal A, 2011, 335: 46

    36. [36]

      [36] Ko S, Sastry M N V, Lin C, Yao C F. Tetrahedron Lett, 2005, 46: 5771

    37. [37]

      [37] Parvulescu V I, Hardacre C. Chem Rev, 2007, 107: 2615

    38. [38]

      [38] Rogers R D, Seddon K R. Ionic Liquids: Industrial Application to Green Chemistry. Washington DC: Am Chem Soc, 2002

    39. [39]

      [39] Miao C X, He L N, Wang J Q, Wang J L. Adv Synth Catal, 2009, 351: 2209

    40. [40]

      [40] Cole A C, Jensen J L, Ntai I, Tran K L T, Weaver K J, Forbes D C, Davis J H Jr. J Am Chem Soc, 2002, 124: 5962

    41. [41]

      [41] Arfan A, Bazureau J P. Org Process Res Dev, 2005, 9: 743

    42. [42]

      [42] Wasserscheid P, Sesing M, Korth W. Green Chem, 2002, 4: 134

    43. [43]

      [43] Wasserscheid P, van Hal R, Bösmann A. Green Chem, 2002, 4: 400

    44. [44]

      [44] Fraga-Dubreuil J, Bourahla K, Rahmouni M, Bazureau J P, Hamelin J. Catal Commun, 2002, 3: 185

    45. [45]

      [45] Gathergood N, Garcia M T, Scammells P J. Green Chem, 2004, 6: 166

    46. [46]

      [46] Garcia M T, Gathergood N, Scammells P J. Green Chem, 2005, 7: 9

    47. [47]

      [47] Gu Y L, Zhang J, Duan Z Y, Deng Y Q. Adv Synth Catal, 2005, 347: 512

    48. [48]

      [48] Kalita P, Kumar R. Microporous Mesoporous Mater, 2012, 149: 1

    49. [49]

      [49] Khaligh N G. J Mol Catal A, 2011, 349: 63

    50. [50]

      [50] Khaligh N G. Catal Sci Technol, 2012, 2: 1633

    51. [51]

      [51] Cave G W V, Raston C L, Scott J L. Chem Commun, 2001: 2159

    52. [52]

      [52] Nagarapu L, Kumari M D, Kumari N V, Kantevari S. Catal Commun, 2007, 8: 1871

    53. [53]

      [53] Saikia L, Dutta D, Dutta D K. Catal Commun, 2012, 19: 1

    54. [54]

      [54] Baghbanian S M, Khaksar S, Mohammad-Vahdat S, Farhang M, Tajbakhsh M. Chin Chem Lett, 2010, 21: 563

    55. [55]

      [55] Khojastehnezhad A, Moeinpour F, Davoodnia A. Chin Chem Lett, 2011, 22, 807

    56. [56]

      [56] Khazaei A, Zolfigol M A, Moosavi-Zare A R, Afsar J, Zare A, Khakyzadeh V, Beyzavi M H. Chin J Catal (催化学报), 2013, 34: 1936

    57. [57]

      [57] Heydari A, Khaksar S, Tajbakhsh M, Bijanzadeh H R. J Fluorine Chem, 2009, 130: 609

    58. [58]

      [58] Hong M, Cai C, Yi W B. J Fluorine Chem, 2010, 131: 111

    59. [59]

      [59] Surasani R, Kalita D, Rao A V D, Yarbagi K, Chandrasekhar K B. J Fluorine Chem, 2012, 135: 91

    60. [60]

      [60] Donelson J L, Gibbs R A, De S K. J Mol Catal A, 2006, 256: 309

    61. [61]

      [61] Heravi M M, Bakhtiari K, Javadi N M, Bamoharram F F, Saeedi M, Oskooie H A. J Mol Catal A, 2007, 264: 50

    62. [62]

      [62] Tajbakhsh M, Alinezhad H, Norouzi M, Baghery S, Akbari M. J Mol Liq, 2013, 177: 44

    63. [63]

      [63] Ko S, Yao C F. Tetrahedron, 2006, 62: 7293

    64. [64]

      [64] Kumar A, Maurya R A. Tetrahedron Lett, 2007, 48: 3887

    65. [65]

      [65] Sapkal S B, Shelke K F, Shingate B B, Shingare M S. Tetrahedron Lett, 2009, 50: 1754

    66. [66]

      [66] Saha M, Pal A K. Tetrahedron Lett, 2011, 52: 4872

    67. [67]

      [67] Zare A, Abi F, Moosavi-Zare A R, Beyzavi M H, Zolfigol M A. J Mol Liq, 2013, 178: 113

  • 加载中
    1. [1]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    2. [2]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    3. [3]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    4. [4]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    5. [5]

      Wei-Tao DouQing-Wen ZengYan KangHaidong JiaYulian NiuJinglong WangLin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995

    6. [6]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    7. [7]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    8. [8]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    9. [9]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    10. [10]

      Qiyan WuRuixin ZhouZhangyi YaoTanyuan WangQing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416

    11. [11]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

    12. [12]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    13. [13]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    14. [14]

      Jiajia WangXinXin GeYajing XiangXiaoliang QiYing LiHangbin XuErya CaiChaofan ZhangYulong LanXiaojing ChenYizuo ShiZhangping LiJianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819

    15. [15]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    16. [16]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    17. [17]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    18. [18]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    19. [19]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

    20. [20]

      Junjie DuanDan ChenLong ChenShuying LiTing ChenDong Wang . 2D hexagonal tessellations sustained by Br···Br/H contacts: From regular to semiregular to k-uniform tilings. Chinese Chemical Letters, 2025, 36(3): 110445-. doi: 10.1016/j.cclet.2024.110445

Metrics
  • PDF Downloads(0)
  • Abstract views(387)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return