Citation: Jingjing Wu, Yongcheng Wang, Jun Cai, Yanzi Jin, Huanjiang Wang, Yanzhen Gan. Theoretical investigation into the Co+ catalytic activity in the cycle reaction of N2O with C2H6 in the gas phase[J]. Chinese Journal of Catalysis, ;2014, 35(4): 579-589. doi: 10.1016/S1872-2067(14)60037-1 shu

Theoretical investigation into the Co+ catalytic activity in the cycle reaction of N2O with C2H6 in the gas phase

  • Corresponding author: Yongcheng Wang, 
  • Received Date: 18 November 2013
    Available Online: 15 January 2014

    Fund Project: 国家自然科学基金(21263023). (21263023)

  • The spin-forbidden mechanism of the reaction between N2O and C2H6 catalyzed by Co+ has been investigated using UB3LYP density functional theory. The Harvey method has been applied to optimize five minimum energy crossing points (MECP) on both triplet and quintet potential energy surfaces. Possible spin inversion processes are discussed by means of spin-orbit coupling calculations. According to the calculation of probability of electron hopping using the Landau-Zener formula, effective intersystem crossing may occur at each MECP. The energetic span model proposed by Kozuch has been applied to the catalytic cycles, and shows the turnover frequency reaches 3.35×10-21 s-1 when Co+ catalyzes the reaction to produce CH3CHO at 298K.
  • 加载中
    1. [1]

      [1] Schröder D, Schwarz H. Angew Chem Int Ed, 1995, 34: 1973

    2. [2]

      [2] Yoshizawa K, Shiota Y, Yamabe T. J Am Chem Soc, 1998, 120: 564

    3. [3]

      [3] Shiota Y, Yoshizawa K. J Am Chem Soc, 2000, 122: 12317

    4. [4]

      [4] Blagojevic V, Orlova G, Bohme D K. J Am Chem Soc, 2005, 127: 3545

    5. [5]

      [5] Liu F S, Chu W, Sun W J, Xue Y, Jiang Q. J Nat Gas Chem, 2012, 21: 708

    6. [6]

      [6] Wen Z G, Li H, Weng W Z, Xia W S, Huang C J, Wan H L. Chin J Catal (温在恭, 李虎, 翁维正, 夏文正, 黄传敬, 万惠霖. 催化学报), 2012, 33: 1183

    7. [7]

      [7] Ryan M F, Fiedler A, Schroeder D, Schwarz H. Organometallics, 1994, 13: 4072

    8. [8]

      [8] Zhao L M, Lu X Q, Li Y Y, Chen J, Guo W Y. J Phys Chem A, 2012, 116: 3282

    9. [9]

      [9] Harvey J N, Poli R, Smith K M. Coord Chem Rev, 2003, 238-239: 347

    10. [10]

      [10] Danovich D, Shaik S. J Am Chem Soc, 1997, 119: 1773

    11. [11]

      [11] Nian J Y, Wang J, Wang Y C. Comput Theoret Chem, 2011, 974: 143

    12. [12]

      [12] Ma W P, Wang Y C, Lü L L, Jin Y Z, Nian J Y, Ji D F, Wang C L, La M J, Wang X B, Wang Q. Comput Theoret Chem, 2011, 977: 69

    13. [13]

      [13] Zeng X L, HuangShan Q S, Ju X H. Acta Phys-Chim Sin (曾秀琳, 黄山奇松, 居学海. 物理化学学报), 2013, 29: 2308

    14. [14]

      [14] Schröder D, Shaik S, Schwarz H. Acc Chem Res, 2000, 33: 139

    15. [15]

      [15] Kozuch S, Shaik S. J Am Chem Soc, 2006, 128: 3355

    16. [16]

      [16] Kozuch S, Shaik S. J Phys Chem A, 2008, 112: 6032

    17. [17]

      [17] Kozuch S, Shaik S. Acc Chem Res, 2011, 44: 101

    18. [18]

      [18] Nian J Y, Wang Y C, Ma W P, Ji D F, Wang C L, La M J. J Phys Chem A, 2011, 115: 11023

    19. [19]

      [19] Uhe A, Kozuch S, Shaik S. J Comput Chem, 2011, 32: 978

    20. [20]

      [20] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A J, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G l. Gaussian 03 (Revision-E. 01). Pittsburgh P A: Gaussian Inc, 2003

    21. [21]

      [21] Su M D, Chu S Y. J Am Chem Soc, 1999, 121: 4229

    22. [22]

      [22] Lee C, Yang W T, Parr R G. Phys Rev B, 1988, 37: 785

    23. [23]

      [23] Chiodo S, Russo N, Sicilia E. J Comput Chem, 2004, 26: 175

    24. [24]

      [24] Raghavachari K, Trucks G W. J Chem Phys, 1989, 91: 1062

    25. [25]

      [25] Yoshizawa K, Shiota Y, Yamabe T. J Chem Phys, 1999, 111: 538

    26. [26]

      [26] Glendening E D, Badenhoop J K, Reed A E, Carpenter J E, Bohmann J A, Morales C M, Weinhold F. NBO 5.0. Madison: University of Wisconsin, 2001

    27. [27]

      [27] Harvey J N, Aschi M. Faraday Discuss, 2003, 124: 129

    28. [28]

      [28] Harvey J N. Phys Chem Chem Phys, 2007, 9: 331

    29. [29]

      [29] Chu T S, Zhang Y, Han K L. Int Rev Phys Chem, 2006, 25: 201

    30. [30]

      [30] Fedorov D G, Koseki S, Schmidt M W, Gordon M S. Int Rev Phys Chem, 2003, 22:551

    31. [31]

      [31] Christiansen J A. Adv Catal, 1953, 5: 311

    32. [32]

      [32] Kozuch S, Shaik S. J Phys Chem A, 2008, 112: 6032

    33. [33]

      [33] Kozuch S, Martin J M L. ACS Catal, 2011, 1: 246

    34. [34]

      [34] Lavrov V V, Blagojevic V, Koyanagi G K, Orlova G, Bohme D K. J Phys Chem A, 2004, 108: 5610

    35. [35]

      [35] Reed A E, Curtiss L A, Weinhold F. Chem Rev, 1988, 88: 899

    36. [36]

      [36] Harvey J N, Aschi M, Schwarz H, Koch W. Theor Chem Accts, 1998, 99: 95

    37. [37]

      [37] Kang H, Beauchamp J L. J Am Chem Soc, 1986, 108: 5663

    38. [38]

      [38] Wan Y L, Zhang C H, Guo Y L, Guo Y, Lu G Z. Chin J Catal (万义玲, 张传辉, 郭杨龙, 郭耘, 卢冠忠. 催化学报), 2012, 33: 557

  • 加载中
    1. [1]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    2. [2]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    3. [3]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    4. [4]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    5. [5]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    6. [6]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    7. [7]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    8. [8]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    9. [9]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    10. [10]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    11. [11]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    12. [12]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    13. [13]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    14. [14]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    15. [15]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    16. [16]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    17. [17]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    18. [18]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    19. [19]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    20. [20]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

Metrics
  • PDF Downloads(531)
  • Abstract views(628)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return