Citation: Liyun Song, Zongcheng Zhan, Xiaojun Liu, Hong He, Wenge Qiu, Xuehong Zi. NOx selective catalytic reduction by ammonia over Cu-ETS-10 catalysts[J]. Chinese Journal of Catalysis, ;2014, 35(7): 1030-1035. doi: 10.1016/S1872-2067(14)60035-8 shu

NOx selective catalytic reduction by ammonia over Cu-ETS-10 catalysts

  • Corresponding author: Hong He, 
  • Received Date: 9 November 2013
    Available Online: 14 January 2014

    Fund Project:

  • Ion exchange method was used to fabricate Cu-ETS-10 titanosilicate catalysts, which possessed high activity, N2 selectivity and SO2 resistance for NOx selective catalytic reduction (SCR). N2 sorption measurements indicated that the microporous catalysts had high surface areas of 288-380 m2/g. The Cu content and speciation were investigated by inductively coupled plasma atomic emission spectrometry, H2 temperature-programmed reduction, and diffuse reflectance infrared Fourier transform spectroscopy. Various Cu species coexisted within the catalyst. Isolated Cu2+ species were the active sites for NH3-SCR, the number of which initially increased and then decreased with increasing Cu content. The catalytic activity of Cu-ETS-10 depended on the isolated Cu2+ species content.
  • 加载中
    1. [1]

      [1] Liu F D, Shan W P, Shi X Y, Zhang C B, He H. Chin J Catal (刘福东, 单文坡, 石晓燕, 张长斌, 贺泓. 催化学报), 2011, 32: 1113

    2. [2]

      [2] Ye Q, Wang L F, Yang R T. Appl Catal A, 2012, 427-428: 24

    3. [3]

      [3] Kwak J H, Tonkyn R G, Kim D H, Szanyi J, Peden C H F. J Catal, 2010, 275: 187

    4. [4]

      [4] Shi X Y, Liu F D, Shan W P, He H. Chin J Catal (石晓燕, 刘福东, 单文波, 贺泓. 催化学报), 2012, 33: 454

    5. [5]

      [5] Putluru S S R, Jensen A D, Riisager A, Fehrmann R. Catal Commun, 2012, 18: 41

    6. [6]

      [6] Putluru S S R, Riisager A, Fehrmann R. Appl Catal B, 2011, 101: 183

    7. [7]

      [7] Corma A, Fornés V, Palomares E. Appl Catal B, 1997, 11: 233

    8. [8]

      [8] Fickel D W, D'Addio E, Lauterbach J A, Lobo R F. Appl Catal B, 2011, 102: 441

    9. [9]

      [9] Xue J J, Wang X Q, Qi G S, Wang J, Shen M Q, Li W. J Catal, 2013, 297: 56

    10. [10]

      [10] Ren L M, Zhang Y B, Zeng S J, Zhu L F, Sun Q, Zhang H Y, Yang C G, Meng X J, Yang X G, Xiao F S. Chin J Catal (任利敏, 张一波, 曾尚景, 朱龙凤, 孙琦, 张海燕, 杨承广, 孟祥举, 杨向光, 肖丰收. 催化学报), 2012, 33: 92

    11. [11]

      [11] Martínez-Franco R, Moliner M, Franch C, Kustov A, Corma A. Appl Catal B, 2012, 127: 273

    12. [12]

      [12] Kuznicki S M. US Patent 4 853 202. 1989

    13. [13]

      [13] Pavel C C, Park S H, Dreier A, Tesche B, Schmidt W. Chem Mater 2006, 18: 3813

    14. [14]

      [14] Bordiga S, Pazé C, Berlier G, Scarano D, Spoto G, Zecchina A, Lamberti C. Catal Today, 2001, 70: 91

    15. [15]

      [15] Ren Y H, Gu M, Hu Y C, Yue B, Jiang L, Kong Z P, He H Y. Chin J Catal (任远航, 辜 敏, 胡怡晨, 岳 斌, 江 磊, 孔祖萍, 贺鹤勇. 催化学报), 2012, 33: 123

    16. [16]

      [16] Surolia P K, Tayade R J, Jasra R V. Ind Eng Chem Res, 2010, 49: 3961

    17. [17]

      [17] Gervasini A, Picciau C, Auroux A. Microporous Mesoporous Mater, 2000, 35-36: 457

    18. [18]

      [18] Carniti P, Gervasini A, Auroux A. Langmuir, 2001, 17: 6938

    19. [19]

      [19] Gao F, Walter E D, Washton N M, Szanyi J, Peden C H F. ACS Catal, 2013, 3: 2083

    20. [20]

      [20] Yu T, Wang J, Shen M Q, Li W. Catal Sci Technol, 2013, 3: 3234

    21. [21]

      [21] Wang J, Yu T, Wang X Q, Qi G S, Xue J J, Shen M Q, Li W. Appl Catal B, 2012, 127: 137

    22. [22]

      [22] Jiang X Y, Ding G H, Lou L P, Chen Y X, Zheng X M. J Mol Catal A, 2004, 218: 187

    23. [23]

      [23] Krisnandi Y K, Lachowski E E, Howe R F. Chem Mater, 2006, 18: 928

    24. [24]

      [24] Góra-Marek K, Palomares A E, Glanowska A, Sadowska K, Datka J. Microporous Mesoporous Mater, 2012, 162: 175

    25. [25]

      [25] Tounsia H, Djemal S, Petitto C, Delahay G. Appl Catal B, 2011, 107: 158

    26. [26]

      [26] Pereda-Ayo B, De La Torre U, Illán-Gómez M J, Bueno-López A, González-Velasco J R. Appl Catal B, 2014, 147: 420

    27. [27]

      [27] Lu G, Li X Y, Qu Z P, Zhao Q D, Zhao L, Chen G H. Chem Eng J, 2011, 168: 1128

    28. [28]

      [28] Praliaud H, Mikhailenko S, Chajar Z, Primet M. Appl Catal B, 1998, 16: 359

    29. [29]

      [29] Zhang Q L, Qiu C T, Xu H D, Lin T, Gong M C, Chen Y Q. Chin J Catal (张秋林, 邱春天, 徐海迪, 林涛, 龚茂初, 陈耀强. 催化学报), 2010, 31: 1411

  • 加载中
    1. [1]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    2. [2]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    3. [3]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    4. [4]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    5. [5]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    6. [6]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    7. [7]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    11. [11]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    12. [12]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    13. [13]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    14. [14]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    15. [15]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    16. [16]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    17. [17]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    18. [18]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    19. [19]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    20. [20]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

Metrics
  • PDF Downloads(0)
  • Abstract views(502)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return