Citation: Mohammad Mazloum-Ardakani, Fariba Sabaghian, Alireza Khoshroo, Hossein Naeimi. Simultaneous determination of the concentrations of isoproterenol, uric acid, and folic acid in solution using a novel nanostructure-based electrochemical sensor[J]. Chinese Journal of Catalysis, ;2014, 35(4): 565-572. doi: 10.1016/S1872-2067(14)60027-9 shu

Simultaneous determination of the concentrations of isoproterenol, uric acid, and folic acid in solution using a novel nanostructure-based electrochemical sensor

  • Corresponding author: Mohammad Mazloum-Ardakani, 
  • Received Date: 18 October 2013
    Available Online: 7 January 2014

  • A carbon paste electrode modified with 2-((7-(2,5-dihydrobenzylideneamino)heptylimino)methyl) benzene-1,4-diol (DHB) and carbon nanotubes were used to simultaneously determine the concentrations of isoproterenol (IP), uric acid (UA), and folic acid (FA) in solution. First, cyclic voltammetry was used to investigate the redox properties of the modified electrode at various scan rates. Next, the mediated oxidation of IP at the modified electrode is described. At the optimum pH of 7.0, the oxidation of IP occurs at a potential about 90 mV less than that of an unmodified carbon paste electrode. Based on the results of differential pulse voltammetry (DPV), the oxidation of IP showed a dynamic range between 10 and 6000 μmol/L, and a detection limit of 1.24 μmol/L. Finally, DPV was used to simultaneously determine the concentrations of IP, UA, and FA in solution at the modified electrode.
  • 加载中
    1. [1]

      [1] Mazloum-Ardakani M, Sheikh-Mohseni M A, Abdollahi-Alibeik M, Benvidi A. Analyst, 2012, 137: 1950

    2. [2]

      [2] Chen X, Zhu J E, Xi Q, Yang W S. Sensor Actuat B, 2012, 161: 648

    3. [3]

      [3] Mazloum-Ardakani M, Taleat Z, Khoshroo A, Beitollahi H, Dehghani H. Biosens Bioelectron, 2012, 35: 75

    4. [4]

      [4] Mazloum-Ardakani M, Khoshroo A. Anal Chim Acta, 2013, 798: 25

    5. [5]

      [5] Justino C I L, Rocha-Santos T, Duarte A C, Rocha-Santos T A. Trends Anal Chem, 2010, 29: 1172

    6. [6]

      [6] Mazloum-Ardakani M, Sheikh-Mohseni M A, Benvidi A. Electroanalysis, 2011, 23: 2822

    7. [7]

      [7] Mazloum-Ardakani M, Sheikh-Mohseni M. In: Naraghi M Ed. Carbon Nanotubes - Growth and Applications. Rijeka: InTech, 2011. 395

    8. [8]

      [8] Yin S B, Zhu Q Q, Qiang Y H, Luo L. Chin J Catal (催化学报), 2012, 33: 290

    9. [9]

      [9] Goodman L S, Gilman A. The Pharmacological Basis of Therapeutics. 9th Ed. New York: McGraw-Hill, 1996

    10. [10]

      [10] Stryer L. Biochemistry. 3rd Ed. New York: Freeman, 1988

    11. [11]

      [11] Gamiz-Gracia L, Garcia-Campaña A M, Huertas-Perez J F, Lara F J. Anal Chim Acta, 2009, 640: 7

    12. [12]

      [12] Lupetti K O, Vieira I C, Fatibello-Filho O. Talanta, 2002, 57: 135

    13. [13]

      [13] Mazloum-Ardakani M, Naser-Sadrabadi A, Sheikh-Mohseni M A, Naeimi H, Benvidi A, Khoshroo A. J Electroanal Chem, 2013, 705: 75

    14. [14]

      [14] Bonifacio V G, Marcolino L H, Teixeira M F S, Fatibello-Filho O. Microchem J, 2004, 78: 55

    15. [15]

      [15] Ensafi A A, Dadkhah M, Karimi-Maleh H. Colloids Surf B, 2011, 84: 148

    16. [16]

      [16] Mashige F, Matsushima Y, Miyata C, Yamada R, Kanazawa H, Sakuma I, Takai N, Shinozuka N, Ohkubo A, Nakahara K. Biomed Chromatogr, 1995, 9: 221

    17. [17]

      [17] Kutluary A, Aslanoglu M. Acta Chim Slov, 2010, 57: 157

    18. [18]

      [18] Mazloum-Ardakani M, Hosseinzadeh L, Khoshroo A, Naeimi H, Moradian M. Electroanalysis, 2014, 26: 275

    19. [19]

      [19] Cunningham S K, Keaveny T V. Clin Chim Acta, 1978, 86: 217

    20. [20]

      [20] Mazloum-Ardakani M, Naser-Sadrabadi A, Sheikh-Mohseni M A, Benvidi A, Naeimi H, Karshenas A. Ionics, 2013, 19: 1663

    21. [21]

      [21] Baghbamidi S E, Beitollahi H, Mohammadi S Z, Tajik S, Soltani-Nejad S, Soltani-Nejad V. Chin J Catal (催化学报), 2013, 34: 1869

    22. [22]

      [22] Hoegger D, Morier P, Vollet C, Heini D, Reymon F, Rossier J S. Anal Bioanal Chem, 2007, 387: 267

    23. [23]

      [23] Pfeiffer C M, Fazili Z, McCoy L, Zhang M, Gunter E W. Clin Chem, 2004, 50: 423

    24. [24]

      [24] Mi Y, Liu Y T, Feng S S. Biomaterials, 2011, 32: 4058

    25. [25]

      [25] Nelson B C, Sharpless K E, Sander L C. J Chromatogr A, 2006, 1135: 203

    26. [26]

      [26] Zhao S L, Yuan H Y, Xie C, Xiao D. J Chromatogr A, 2006, 1107: 290

    27. [27]

      [27] Aurora-Prado M S, Silvaa C A, Tavares M F M, Altria K D. J Chromatogr A, 2004, 1051: 291

    28. [28]

      [28] de Quiros A R B, de Ron C C, Lopez-Hernandez J, Lage-Yusty M A. J Chromatogr A, 2004, 1032: 135

    29. [29]

      [29] Bandžuchova L, Šelešovska R, Navratil T, Chýlková J. Electrochim Acta, 2011, 56: 2411

    30. [30]

      [30] Weng J, Zhang Z W, Sun L P, Wang J A. Biosens Bioelectron, 2011, 26: 1847

    31. [31]

      [31] Prasad B B, Madhuri R, Tiwari M P, Sharma P S. Sens Actuators B, 2010, 146: 321

    32. [32]

      [32] Mazloum-Ardakani M, Khoshroo A. Electrochim Acta, 2013, 103: 77

    33. [33]

      [33] Keyvanfard M, Karimi-Maleh H, Alizad K. Chin J Catal (催化学报), 2013, 34: 1883

    34. [34]

      [34] Laviron E. J Electroanal Chem, 1979, 101: 19

    35. [35]

      [35] Sharp M, Petersson M, Edstrom K. J Electroanal Chem, 1979, 95: 123

    36. [36]

      [36] Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals and Applications. 2nd Ed. New York: Wiley, 2001

    37. [37]

      [37] Galus Z. Fundamentals of Electrochemical Analysis. NewYork: Ellis Horwood, 1976

    38. [38]

      [38] Ghorbani-Bidkorbeh F, Shahrokhian S, Mohammadi A, Dinarvand R. Electrochim Acta, 2010, 55: 2752

    39. [39]

      [39] Ensafi A A, Maleh H K. Int J Electrochem Sci, 2010, 5: 1484

    40. [40]

      [40] Beitollahi H, Raoof J B, Karimi-Maleh H, Hosseinzadeh R. J Solid State Electrochem, 2012, 16: 1701

    41. [41]

      [41] Beitollahi H, Mohadesi A, Mohammadi S, Akbari A. Electrochim Acta, 2012, 68: 220

    42. [42]

      [42] Ensafi A A, Bahrami H, Karimi-Maleh H, Mallakpour S. Chin J Catal (催化学报), 2012, 33: 1919

  • 加载中
    1. [1]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    2. [2]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    3. [3]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    4. [4]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    5. [5]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    6. [6]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    7. [7]

      Chenhao ZhangQian ZhangYezhou HuHanyu HuJunhao YangChang YangYe ZhuZhengkai TuDeli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429

    8. [8]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    9. [9]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    10. [10]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

    11. [11]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    12. [12]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    13. [13]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

    14. [14]

      Ting XieXun HeLang HeKai DongYongchao YaoZhengwei CaiXuwei LiuXiaoya FanTengyue LiDongdong ZhengShengjun SunLuming LiWei ChuAsmaa FaroukMohamed S. HamdyChenggang XuQingquan KongXuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005

    15. [15]

      Quanyou GuoYue YangTingting HuHongqi ChuLijun LiaoXuepeng WangZhenzi LiLiping GuoWei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235

    16. [16]

      Bowen LiTing WangMing XuYuqi WangZhaoxing LiMei LiuWenjing ZhangMing Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467

    17. [17]

      Hong-Rui LiXia KangRui GaoMiao-Miao ShiBo BiZe-Yu ChenJun-Min Yan . Interfacial interactions of Cu/MnOOH enhance ammonia synthesis from electrochemical nitrate reduction. Chinese Chemical Letters, 2025, 36(2): 109958-. doi: 10.1016/j.cclet.2024.109958

    18. [18]

      Xinyu HouXuelian YuMeng LiuHengxing PengLijuan WuLibing LiaoGuocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845

    19. [19]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    20. [20]

      Qiuyu Ming Huijun Jiang Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092

Metrics
  • PDF Downloads(485)
  • Abstract views(658)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return