Citation:
Mohammad Mazloum-Ardakani, Fariba Sabaghian, Alireza Khoshroo, Hossein Naeimi. Simultaneous determination of the concentrations of isoproterenol, uric acid, and folic acid in solution using a novel nanostructure-based electrochemical sensor[J]. Chinese Journal of Catalysis,
;2014, 35(4): 565-572.
doi:
10.1016/S1872-2067(14)60027-9
-
A carbon paste electrode modified with 2-((7-(2,5-dihydrobenzylideneamino)heptylimino)methyl) benzene-1,4-diol (DHB) and carbon nanotubes were used to simultaneously determine the concentrations of isoproterenol (IP), uric acid (UA), and folic acid (FA) in solution. First, cyclic voltammetry was used to investigate the redox properties of the modified electrode at various scan rates. Next, the mediated oxidation of IP at the modified electrode is described. At the optimum pH of 7.0, the oxidation of IP occurs at a potential about 90 mV less than that of an unmodified carbon paste electrode. Based on the results of differential pulse voltammetry (DPV), the oxidation of IP showed a dynamic range between 10 and 6000 μmol/L, and a detection limit of 1.24 μmol/L. Finally, DPV was used to simultaneously determine the concentrations of IP, UA, and FA in solution at the modified electrode.
-
-
-
[1]
[1] Mazloum-Ardakani M, Sheikh-Mohseni M A, Abdollahi-Alibeik M, Benvidi A. Analyst, 2012, 137: 1950
-
[2]
[2] Chen X, Zhu J E, Xi Q, Yang W S. Sensor Actuat B, 2012, 161: 648
-
[3]
[3] Mazloum-Ardakani M, Taleat Z, Khoshroo A, Beitollahi H, Dehghani H. Biosens Bioelectron, 2012, 35: 75
-
[4]
[4] Mazloum-Ardakani M, Khoshroo A. Anal Chim Acta, 2013, 798: 25
-
[5]
[5] Justino C I L, Rocha-Santos T, Duarte A C, Rocha-Santos T A. Trends Anal Chem, 2010, 29: 1172
-
[6]
[6] Mazloum-Ardakani M, Sheikh-Mohseni M A, Benvidi A. Electroanalysis, 2011, 23: 2822
-
[7]
[7] Mazloum-Ardakani M, Sheikh-Mohseni M. In: Naraghi M Ed. Carbon Nanotubes - Growth and Applications. Rijeka: InTech, 2011. 395
-
[8]
[8] Yin S B, Zhu Q Q, Qiang Y H, Luo L. Chin J Catal (催化学报), 2012, 33: 290
-
[9]
[9] Goodman L S, Gilman A. The Pharmacological Basis of Therapeutics. 9th Ed. New York: McGraw-Hill, 1996
-
[10]
[10] Stryer L. Biochemistry. 3rd Ed. New York: Freeman, 1988
-
[11]
[11] Gamiz-Gracia L, Garcia-Campaña A M, Huertas-Perez J F, Lara F J. Anal Chim Acta, 2009, 640: 7
-
[12]
[12] Lupetti K O, Vieira I C, Fatibello-Filho O. Talanta, 2002, 57: 135
-
[13]
[13] Mazloum-Ardakani M, Naser-Sadrabadi A, Sheikh-Mohseni M A, Naeimi H, Benvidi A, Khoshroo A. J Electroanal Chem, 2013, 705: 75
-
[14]
[14] Bonifacio V G, Marcolino L H, Teixeira M F S, Fatibello-Filho O. Microchem J, 2004, 78: 55
-
[15]
[15] Ensafi A A, Dadkhah M, Karimi-Maleh H. Colloids Surf B, 2011, 84: 148
-
[16]
[16] Mashige F, Matsushima Y, Miyata C, Yamada R, Kanazawa H, Sakuma I, Takai N, Shinozuka N, Ohkubo A, Nakahara K. Biomed Chromatogr, 1995, 9: 221
-
[17]
[17] Kutluary A, Aslanoglu M. Acta Chim Slov, 2010, 57: 157
-
[18]
[18] Mazloum-Ardakani M, Hosseinzadeh L, Khoshroo A, Naeimi H, Moradian M. Electroanalysis, 2014, 26: 275
-
[19]
[19] Cunningham S K, Keaveny T V. Clin Chim Acta, 1978, 86: 217
-
[20]
[20] Mazloum-Ardakani M, Naser-Sadrabadi A, Sheikh-Mohseni M A, Benvidi A, Naeimi H, Karshenas A. Ionics, 2013, 19: 1663
-
[21]
[21] Baghbamidi S E, Beitollahi H, Mohammadi S Z, Tajik S, Soltani-Nejad S, Soltani-Nejad V. Chin J Catal (催化学报), 2013, 34: 1869
-
[22]
[22] Hoegger D, Morier P, Vollet C, Heini D, Reymon F, Rossier J S. Anal Bioanal Chem, 2007, 387: 267
-
[23]
[23] Pfeiffer C M, Fazili Z, McCoy L, Zhang M, Gunter E W. Clin Chem, 2004, 50: 423
-
[24]
[24] Mi Y, Liu Y T, Feng S S. Biomaterials, 2011, 32: 4058
-
[25]
[25] Nelson B C, Sharpless K E, Sander L C. J Chromatogr A, 2006, 1135: 203
-
[26]
[26] Zhao S L, Yuan H Y, Xie C, Xiao D. J Chromatogr A, 2006, 1107: 290
-
[27]
[27] Aurora-Prado M S, Silvaa C A, Tavares M F M, Altria K D. J Chromatogr A, 2004, 1051: 291
-
[28]
[28] de Quiros A R B, de Ron C C, Lopez-Hernandez J, Lage-Yusty M A. J Chromatogr A, 2004, 1032: 135
-
[29]
[29] Bandžuchova L, Šelešovska R, Navratil T, Chýlková J. Electrochim Acta, 2011, 56: 2411
-
[30]
[30] Weng J, Zhang Z W, Sun L P, Wang J A. Biosens Bioelectron, 2011, 26: 1847
-
[31]
[31] Prasad B B, Madhuri R, Tiwari M P, Sharma P S. Sens Actuators B, 2010, 146: 321
-
[32]
[32] Mazloum-Ardakani M, Khoshroo A. Electrochim Acta, 2013, 103: 77
-
[33]
[33] Keyvanfard M, Karimi-Maleh H, Alizad K. Chin J Catal (催化学报), 2013, 34: 1883
-
[34]
[34] Laviron E. J Electroanal Chem, 1979, 101: 19
-
[35]
[35] Sharp M, Petersson M, Edstrom K. J Electroanal Chem, 1979, 95: 123
-
[36]
[36] Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals and Applications. 2nd Ed. New York: Wiley, 2001
-
[37]
[37] Galus Z. Fundamentals of Electrochemical Analysis. NewYork: Ellis Horwood, 1976
-
[38]
[38] Ghorbani-Bidkorbeh F, Shahrokhian S, Mohammadi A, Dinarvand R. Electrochim Acta, 2010, 55: 2752
-
[39]
[39] Ensafi A A, Maleh H K. Int J Electrochem Sci, 2010, 5: 1484
-
[40]
[40] Beitollahi H, Raoof J B, Karimi-Maleh H, Hosseinzadeh R. J Solid State Electrochem, 2012, 16: 1701
-
[41]
[41] Beitollahi H, Mohadesi A, Mohammadi S, Akbari A. Electrochim Acta, 2012, 68: 220
-
[42]
[42] Ensafi A A, Bahrami H, Karimi-Maleh H, Mallakpour S. Chin J Catal (催化学报), 2012, 33: 1919
-
[1]
-
-
-
[1]
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
-
[2]
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
-
[3]
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
-
[4]
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
-
[5]
Yue Zhang , Xiaoya Fan , Xun He , Tingyu Yan , Yongchao Yao , Dongdong Zheng , Jingxiang Zhao , Qinghai Cai , Qian Liu , Luming Li , Wei Chu , Shengjun Sun , Xuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806
-
[6]
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
-
[7]
Chenhao Zhang , Qian Zhang , Yezhou Hu , Hanyu Hu , Junhao Yang , Chang Yang , Ye Zhu , Zhengkai Tu , Deli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429
-
[8]
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
-
[9]
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
-
[10]
Wei Zhou , Xi Chen , Lin Lu , Xian-Rong Song , Mu-Jia Luo , Qiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902
-
[11]
Zhihao Gu , Jiabo Le , Hehe Wei , Zehui Sun , Mahmoud Elsayed Hafez , Wei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849
-
[12]
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
-
[13]
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
-
[14]
Ting Xie , Xun He , Lang He , Kai Dong , Yongchao Yao , Zhengwei Cai , Xuwei Liu , Xiaoya Fan , Tengyue Li , Dongdong Zheng , Shengjun Sun , Luming Li , Wei Chu , Asmaa Farouk , Mohamed S. Hamdy , Chenggang Xu , Qingquan Kong , Xuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005
-
[15]
Quanyou Guo , Yue Yang , Tingting Hu , Hongqi Chu , Lijun Liao , Xuepeng Wang , Zhenzi Li , Liping Guo , Wei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235
-
[16]
Bowen Li , Ting Wang , Ming Xu , Yuqi Wang , Zhaoxing Li , Mei Liu , Wenjing Zhang , Ming Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467
-
[17]
Hong-Rui Li , Xia Kang , Rui Gao , Miao-Miao Shi , Bo Bi , Ze-Yu Chen , Jun-Min Yan . Interfacial interactions of Cu/MnOOH enhance ammonia synthesis from electrochemical nitrate reduction. Chinese Chemical Letters, 2025, 36(2): 109958-. doi: 10.1016/j.cclet.2024.109958
-
[18]
Xinyu Hou , Xuelian Yu , Meng Liu , Hengxing Peng , Lijuan Wu , Libing Liao , Guocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845
-
[19]
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
-
[20]
Qiuyu Ming , Huijun Jiang , Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092
-
[1]
Metrics
- PDF Downloads(485)
- Abstract views(658)
- HTML views(8)