Citation: Tiago P. Braga, Regina C. R. Santos, Barbara M. C. Sales, Bruno R. da Silva, Antônio N. Pinheiro, Edson R. Leite, Antoninho Valentini. CO2 mitigation by carbon nanotube formation during dry reforming of methane analyzed by factorial design combined with response surface methodology[J]. Chinese Journal of Catalysis, ;2014, 35(4): 514-523. doi: 10.1016/S1872-2067(14)60018-8 shu

CO2 mitigation by carbon nanotube formation during dry reforming of methane analyzed by factorial design combined with response surface methodology

  • Corresponding author: Antoninho Valentini, 
  • Received Date: 19 September 2013
    Available Online: 30 December 2013

  • A factorial experimental design was combined with response surface methodology (RSM) to optimize the catalyzed CO2 consumption by coke deposition and syngas production during the dry reforming of CH4. The CH4/CO2 feed ratio and the reaction temperature were chosen as the variables, and the selected responses were CH4 and CO2 conversion, the H2/CO ratio, and coke deposition. The optimal reaction conditions were found to be a CH4/CO2 feed ratio of approximately 3 at 700 ℃, producing a large quantity of coke and realizing high CO2 conversion. Furthermore, Raman results showed that the CH4/CO2 ratio and reaction temperature affect the system's response, particularly the characteristics of the coke produced, which indicates the formation of carbon nanotubes and amorphous carbon.
  • 加载中
    1. [1]

      [1] Nigam P S, Singh A. Prog Energy Combust Sci, 2011, 37: 52

    2. [2]

      [2] Figueroa J D, Fout T, Plasynski S, McIlvried H, Srivastava R D. Int J Greenh Gas Control, 2008, 2: 9

    3. [3]

      [3] Demirbas A. Appl Energy, 2009, 86: S108

    4. [4]

      [4] Naik S N, Goud V V, Rout P K, Dalai A K. Renew Sustain Energy Rev, 2010, 14: 578

    5. [5]

      [5] Kang K M, Kim H W, Shim I W, Kwak H Y. Fuel Process Technol, 2011, 92: 1236

    6. [6]

      [6] Barroso-Quironga M M, Castro-Luna A E. Int J Hydrogen Energy, 2010, 35: 6052

    7. [7]

      [7] Rivas M E, Fierro J L G, Goldwasser M R, Pietri E, Perez-Zurita M J, Griboval-Constant A, Leclercq G. Appl Catal A, 2008, 344: 10

    8. [8]

      [8] Shi C, Zhang A J, Li X S, Zhang S H, Zhu A M, Ma Y F, Au C. Appl Catal A, 2012, 431-432: 164

    9. [9]

      [9] Ibrahim A A, Fakeeha A H, Al-Fatesh A S. Int J Hydrogen Energy, 2014, 39: 1680

    10. [10]

      [10] Sokolov S, Kondratenko E V, Pohl M M, Rodemerck U. Int J Hydrogen Energy, 2013, 38: 16121

    11. [11]

      [11] Fukuhara C, Hyodo R, Yamamoto K, Masuda K, Watanabe R. Appl Catal A, 2013, 468: 18

    12. [12]

      [12] da Silva B R, dos Santos R C R, Valentini A. Curr Top Catal, 2012, 10: 93

    13. [13]

      [13] Albarazi A, Beaunier P, Da Costa P. Int J Hydrogen Energy, 2013, 38: 127

    14. [14]

      [14] Pour A N, Shahri S M K, Bozorgzadeh H R, Zamani Y, Tavasoli A, Marvast M A. Appl Catal A, 2008, 348: 201

    15. [15]

      [15] Guo J Z, Hou Z Y, Gao J, Zheng X M. Fuel, 2008, 87: 1348

    16. [16]

      [16] Maluf S S, Assaf E M. Fuel, 2009, 88: 1547

    17. [17]

      [17] Hou Z Y, Gao J, Guo J Z, Liang D, Lou H, Zheng X M. J Catal, 2007, 250: 331

    18. [18]

      [18] Gao J, Hou Z Y, Guo J Z, Zhu Y H, Zheng X M. Catal Today, 2008, 131: 278

    19. [19]

      [19] Zhang J G, Wang H, Dalai A K. Appl Catal A, 2008, 339: 121

    20. [20]

      [20] Zhao C G, Ji L J, Liu H J, Hu G J, Zhang S M, Yang M S, Yang Z Z. J Solid State Chem, 2004, 177: 4394

    21. [21]

      [21] Mittal H, Mishra S B, Mishra A K, Kaith B S, Jindal R. J Inorg Organomet Polym Mater, 2013, 23: 1128

    22. [22]

      [22] Wu Y Y, Zhou S Q, Qin F H, Ye X Y, Zheng K. J Hazard Mater, 2010, 180: 456

    23. [23]

      [23] Olmez-Hanci T, Arslan-Alaton I, Basar G. J Hazard Mater, 2011, 185: 193

    24. [24]

      [24] Braga T P, Sales B M C, Pinheiro A N, Herrera W T, Baggio-Saitovitch E, Valentini A. Catal Sci Technol, 2011, 1: 1383

    25. [25]

      [25] Hormozi-Nezhad M R, Jalali-Heravi M, Robatjazi H, Ebrahimi-Najafabadi H. Colloids Surf A, 2012, 393: 46

    26. [26]

      [26] de la Osa A R, de Lucas A, Sanchez-Silva L, Diaz-Maroto J, Valverde J L, Sanchez P. Fuel, 2012, 95: 587

    27. [27]

      [27] Karimipour S, Gerspacher R, Gupta R, Spiteri R J. Fuel, 2013, 103: 308

    28. [28]

      [28] Pompeo F, Nichio N N, Souza M M V M, Cesar D V, Ferretti O A, Schmal M. Appl Catal A, 2007, 316: 175

    29. [29]

      [29] Gonçalves N S, Carvalho J A, Lima Z M, Sasaki J M. Mater Lett, 2012, 72: 36

    30. [30]

      [30] Zhao J F, Zhao J J, Chen J H, Wang X H, Han Z D, Li Y H. Ceram Int, 2014, 40: 3379

    31. [31]

      [31] Chen G, Chen J, Srinivasakannan C, Peng J H. Appl Surf Sci, 2012, 258: 3068

    32. [32]

      [32] Pavlova S, Kapokova L, Bunina R, Alikina G, Sazonova N, Krieger T, Ishchenko A, Rogov V, Gulyaev R, Sadykov V, Mirodatos C. Catal Sci Technol, 2012, 2: 2099

    33. [33]

      [33] Xu L L, Song H L, Chou L J. Appl Catal B, 2011, 108-109: 177

    34. [34]

      [34] Pocsik I, Hundhausen M, Koos M, Ley L. J Non-Cryst Solids, 1998, 227-230 (Pt. B): 1083

    35. [35]

      [35] Klar P, Lidorikis E, Eckmann A, Verzhbitskiy I A, Ferrari A C, Casiraghi C. Phys Rev B, 2013, 87: 205435

    36. [36]

      [36] Ferrari A C. Solid State Commun, 2007, 143: 47

  • 加载中
    1. [1]

      Qingming ZengYanjun WenBeibei GaoQingyan ZhangLulin GuoChao ZhangJiachen WangQingyi Zeng . Self-driven photoelectrocatalytic systems with carbon-felt-loaded carboxylated carbon nanotube cathodes: Reduction of uranyl, oxidation of organics, and power generation. Chinese Chemical Letters, 2025, 36(9): 110673-. doi: 10.1016/j.cclet.2024.110673

    2. [2]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    3. [3]

      He YaoWenhao JiYi FengChunbo QianChengguang YueYue WangShouying HuangMei-Yan WangXinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076

    4. [4]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    5. [5]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    6. [6]

      Junchuan Sun Lu Wang . Carbon exchange enabled supra-photothermal methane dry reforming. Chinese Journal of Structural Chemistry, 2024, 43(10): 100330-100330. doi: 10.1016/j.cjsc.2024.100330

    7. [7]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    8. [8]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    9. [9]

      Li LiZhi-Xin YanChuan-Kun RanYi LiuShuo ZhangTian-Yu GaoLong-Fei DaiLi-Li LiaoJian-Heng YeDa-Gang Yu . Electro-reductive carboxylation of CCl bonds in unactivated alkyl chlorides and polyvinyl chloride with CO2. Chinese Chemical Letters, 2024, 35(12): 110104-. doi: 10.1016/j.cclet.2024.110104

    10. [10]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    11. [11]

      Zhen ZhangXue-ling ChenXiu-Mei XieTian-Yu GaoJing QinJun-Jie LiChao FengDa-Gang Yu . Iron-promoted carbonylation–rearrangement of α-aminoaryl-tethered alkylidenecyclopropanes with CO2: Facile synthesis of quinolinofurans. Chinese Chemical Letters, 2025, 36(4): 110056-. doi: 10.1016/j.cclet.2024.110056

    12. [12]

      Hao SunXiaoxue LiBaoyu WuKai ZhuYinyi GaoTianzeng BaoHongbin WuDianxue Cao . Direct regeneration of spent LiFePO4 cathode material via a simple solid-phase method. Chinese Chemical Letters, 2025, 36(6): 110041-. doi: 10.1016/j.cclet.2024.110041

    13. [13]

      Zhi-Xin LiXiao-Feng QiuPei-Qin Liao . Efficient electroreduction of CO2 to acetate with relative purity of 100% by ultrasmall Cu2O nanoparticle on a conductive metal-organic framework. Chinese Chemical Letters, 2025, 36(11): 110473-. doi: 10.1016/j.cclet.2024.110473

    14. [14]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    15. [15]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    16. [16]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    17. [17]

      Yuchen ZhangLifeng DingZhenghe XieXin ZhangXiaofeng SuiJian-Rong Li . Porous sorbents for direct capture of carbon dioxide from ambient air. Chinese Chemical Letters, 2025, 36(3): 109676-. doi: 10.1016/j.cclet.2024.109676

    18. [18]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    19. [19]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    20. [20]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

Metrics
  • PDF Downloads(451)
  • Abstract views(662)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return