Citation: Abolghasem Davoodnia, Rahil Mahjoobin, Niloofar Tavakoli-Hoseini. A facile, green, one-pot synthesis of amidoalkyl naphthols under solvent-free conditions catalyzed by a carbon-based solid acid[J]. Chinese Journal of Catalysis, ;2014, 35(4): 490-495. doi: 10.1016/S1872-2067(14)60011-5 shu

A facile, green, one-pot synthesis of amidoalkyl naphthols under solvent-free conditions catalyzed by a carbon-based solid acid

  • Corresponding author: Abolghasem Davoodnia, 
  • Received Date: 18 October 2013
    Available Online: 25 December 2013

  • An efficient, environmentally friendly procedure for the synthesis of amidoalkyl naphthols through the one-pot, three-component reaction of β-naphthol, aryl aldehydes, and acetamide in the presence of a carbon-based solid acid under thermal solvent-free conditions is described. The beneficial features of this new synthetic approach include short reaction time, high yields, clean reaction profiles, and a simple work-up procedure. Furthermore, the catalyst can be readily recycled and reused four times without obvious significant loss of activity. The structure of the catalyst was confirmed by Fourier transform infrared spectroscopy, N2 adsorption/desorption analysis, and X-ray diffraction.
  • 加载中
    1. [1]

      [1] Poliakoff M, Fitzpatrick J M, Farren T R, Anastas P T. Science, 2002, 297: 807

    2. [2]

      [2] Khojastehnezhad A, Davoodnia A, Bakavoli M, Tavakoli-Hoseini N, Zeinali-Dastmalbaf M. Chin J Chem, 2011, 29: 297

    3. [3]

      [3] Ugi I. Pure Appl Chem, 2001, 73: 187

    4. [4]

      [4] Dömling A. Chem Rev, 2006, 106: 17

    5. [5]

      [5] Davoodnia A, Heravi, M M, Safavi-Rad Z, Tavakoli-Hoseini N. Synth Commun, 2010, 40: 2588

    6. [6]

      [6] Weber L. Drug Discov Today, 2002, 7: 143

    7. [7]

      [7] Hulme C, Gore V. Curr Med Chem, 2003, 10: 51

    8. [8]

      [8] Nagawade R R, Shinde D B. Mendeleev Commun, 2007, 17: 299

    9. [9]

      [9] Das B, Laxminarayana K, Ravikanth B, Rao B R. J Mol Catal A, 2007, 261: 180

    10. [10]

      [10] Nagarapu L, Baseeruddin M, Apuri S, Kantevari S. Catal Commun, 2007, 8: 1729

    11. [11]

      [11] Nagawade R R, Shinde D B. Chin J Chem, 2007, 25: 1710

    12. [12]

      [12] Lei M, Ma L, Hu L H. Tetrahedron Lett, 2009, 50: 6393

    13. [13]

      [13] Kumar A, Rao M S, Ahmad I, Khungar B. Can J Chem, 2009, 87: 714

    14. [14]

      [14] Jiang W Q, An L T, Zou J P. Chin J Chem, 2008, 26: 1697

    15. [15]

      [15] Wang M, Liang Y. Monatsh Chem, 2011, 142: 153

    16. [16]

      [16] Wang M, Liang Y, Zhang T T, Gao J J. Chin J Chem, 2011, 29: 1656

    17. [17]

      [17] Shaterian H R, Yarahmadi H, Ghashang M. Bioorg Med Chem Lett, 2008, 18: 788

    18. [18]

      [18] Shaterian H R, Yarahmadi H, Ghashang M. Tetrahedron, 2008, 64: 1263

    19. [19]

      [19] Zali A, Shokrolahi A. Chin Chem Lett, 2012, 23: 269

    20. [20]

      [20] Kantevari S, Vuppalapati S V N, Nagarapu L. Catal Commun, 2007, 8: 1857

    21. [21]

      [21] Shaterian H R, Amirzadeh A, Khorami F, Ghashang M. Synth Commun, 2008, 38: 2983

    22. [22]

      [22] Gerard V S, Notheisz F. Heterogeneous Catalysis in Organic Chemistry. San Diego: Elsevier, 2000

    23. [23]

      [23] Wilson K, Clark J H. Pure Appl Chem, 2000, 72: 1313

    24. [24]

      [24] Seifi N, Zahedi-Niaki M H, Barzegari M R, Davoodnia A, Zhiani R, Kaju A A. J Mol Catal A, 2006, 260: 77

    25. [25]

      [25] Zeinali-Dastmalbaf M, Davoodnia A, Heravi M M, Tavakoli-Hoseini N, Khojastehnezhad A, Zamani H A. Bull Korean Chem Soc, 2011, 32: 656

    26. [26]

      [26] Tanaka K, Toda F. Chem Rev, 2000, 100: 1025

    27. [27]

      [27] Martins M A P, Frizzo C P, Moreira D N, Buriol L, Machado P. Chem Rev, 2009, 109: 4140

    28. [28]

      [28] Davoodnia A, Heravi M M, Rezaei-Daghigh L, Tavakoli-Hoseini N. Monatsh Chem, 2009, 140: 1499

    29. [29]

      [29] Davoodnia A, Bakavoli M, Moloudi R, Khashi M, Tavakoli-Hoseini N. Chin Chem Lett, 2010, 21: 1

    30. [30]

      [30] Tavakoli-Hoseini N, Davoodnia A. Asian J Chem, 2010, 22: 7197

    31. [31]

      [31] Davoodnia A, Khojastehnezhad A, Tavakoli-Hoseini N. Bull Korean Chem Soc, 2011, 32: 2243

    32. [32]

      [32] Davoodnia A. Asian J Chem, 2010, 22: 1595

    33. [33]

      [33] Davoodnia A. Synth React Inorg Met-Org Nano-Met Chem, 2012, 42: 1022

    34. [34]

      [34] Mohammadzadeh-Dehsorkh N, Davoodnia A, Tavakoli-Hoseini N, Moghaddas M. Synth React Inorg Met-Org Nano-Met Chem, 2011, 41: 1135

    35. [35]

      [35] Emrani A, Davoodnia A, Tavakoli-Hoseini N. Bull Korean Chem Soc, 2011, 32: 2385

    36. [36]

      [36] Davoodnia A, Zare-Bidaki A, Behmadi H. Chin J Catal (催化学报), 2012, 33: 1797

    37. [37]

      [37] Davoodnia A, Khashi M, Tavakoli-Hoseini N. Chin J Catal (催化学报), 2013, 34, 1173

    38. [38]

      [38] Hara M, Yoshida T, Takagaki A, Takata T, Kondo J N, Hayashi S, Domen K. Angew Chem Int Ed, 2004, 43: 2955

    39. [39]

      [39] Davoodnia A, Tavakoli-Nishaburi A, Tavakoli-Hoseini N. Bull Korean Chem Soc, 2011, 32: 635

    40. [40]

      [40] Moghaddas M, Davoodnia A, Heravi M M, Tavakoli-Hoseini N. Chin J Catal, 2012, 33: 706

    41. [41]

      [41] Tavakoli-Hoseini N, Davoodnia A. Chin J Chem, 2011, 29: 203

    42. [42]

      [42] Sing K S W, Everett D H, Haul R A W, Moscou L, Pierotti R A, Rouquerol J, Siemieniewska T. Pure Appl Chem, 1985, 57: 603

  • 加载中
    1. [1]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332

    2. [2]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    3. [3]

      Wen-Jing LiJun-Bo WangYu-Heng LiuMo ZhangZhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001

    4. [4]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    5. [5]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    6. [6]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    7. [7]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    8. [8]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    9. [9]

      Zhanheng YanWeiqing SuWeiwei XuQianhui MaoLisha XueHuanxin LiWuhua LiuXiu LiQiuhui Zhang . Carbon-based quantum dots/nanodots materials for potassium ion storage. Chinese Chemical Letters, 2025, 36(4): 110217-. doi: 10.1016/j.cclet.2024.110217

    10. [10]

      Shuai LiLiuting ZhangFuying WuYiqun JiangXuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566

    11. [11]

      Jianing HeXiao WangZijian WangRuize JiangKe WangRui ZhangHuilin WangBaokang GengHongyi GaoShuyan SongHongjie Zhang . Investigation on Cu promotion effect on Ce-based solid solution-anchored Rh single atoms for three-way catalysis. Chinese Chemical Letters, 2025, 36(2): 109640-. doi: 10.1016/j.cclet.2024.109640

    12. [12]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    13. [13]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    14. [14]

      Yajun HouChuanzheng ZhuQiang WangXiaomeng ZhaoKun LuoZongshuai GongZhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697

    15. [15]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    16. [16]

      Yan WangJiaqi ZhangXiaofeng WuSibo WangMasakazu AnpoYuanxing Fang . Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts. Chinese Chemical Letters, 2025, 36(2): 110439-. doi: 10.1016/j.cclet.2024.110439

    17. [17]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    18. [18]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    19. [19]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    20. [20]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

Metrics
  • PDF Downloads(483)
  • Abstract views(558)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return