Citation: Kun-Ming Che, Ming-Zu Zhang, Jin-Lin He, Pei-Hong Ni. Polyphosphoester-modified Cellulose Nanocrystals for Stabilizing Pickering Emulsion Polymerization of Styrene[J]. Chinese Journal of Polymer Science doi: 10.1007/s10118-020-2404-z shu

Polyphosphoester-modified Cellulose Nanocrystals for Stabilizing Pickering Emulsion Polymerization of Styrene

  • Corresponding author: Pei-Hong Ni, phni@suda.edu.cn
  • Received Date: 28 December 2019
    Revised Date: 12 February 2020
    Available Online: 20 April 2020

  • The structure and properties of functional nanoparticles are important for stabilizing Pickering emulsion polymerization. Recently, cellulose nanocrystals (CNCs) are increasingly favored as a bio-based stabilizer for Pickering emulsions. In this study, we reported a novel functionalized polyphosphoester-grafted CNCs for the stabilization of oil-in-water Pickering emulsions and the emulsion polymerization of styrene. First, polyphosphoester containing an amino group at one end of the chain, abbreviated as PBYP-NH2, was prepared by ring-opening polymerization (ROP) and hydrolysis reaction, wherein PBYP represents poly[2-(but-3-yn-1-yloxy)-2-oxo-1,3,2-dioxaphospholane]. Subsequently, CNC-COOH was obtained via 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) oxidation of CNCs. The functionalized nanocrystals CNC-PBYP-COOH with carboxyl groups and polyphosphoester on the surface were obtained by the amidation reaction of PBYP-NH2 with CNC-COOH. Finally, we used CNC-PBYP-COOH as sole particle emulsifiers to stabilize styrene-in-water Pickering emulsions and studied its effects on the emulsions in details by using dynamic light scattering (DLS). The results indicated that the properties of these emulsions depended on the concentration of hydrophobically modified CNCs, volume ratios of oil to water, and pH values. The modified CNCs had higher ability to stabilize the styrene-in-water emulsions relative to the unmodified CNCs, and a stable oil-in-water (o/w) Pickering emulsion with diameter of hundreds of nanometers could be obtained. The resulting emulsions could be polymerized to yield nanosized latexes. The polyphosphoester-modified CNCs as green particle emulsifiers can efficiently stabilize nanoemulsions and latexes, which would promote the development of novel environmentally friendly materials.
  • 加载中
    1. [1]

      Ramsden, W. Separation of solids in the surface-layers of solutions and 'suspensions' (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation). Preliminary Account. Proc. R. Soc. London 1903, 72, 156−164.

    2. [2]

      Pickering, S. U. CXCVI Emulsions. J. Chem. Soc., Trans. 1907, 91, 2001−2021.  doi: 10.1039/CT9079102001

    3. [3]

      Chevalier, Y.; Bolzinger, M. A. Emulsions stabilized with solid nanoparticles: pickering emulsions. Colloids Surf. A: Physicochem. Eng. Aspects 2013, 439, 23−34.  doi: 10.1016/j.colsurfa.2013.02.054

    4. [4]

      Aveyard, R.; Binks, B. P.; Clint, J. H. Emulsions stabilised solely by colloidal particles. Adv. Colloid Interface Sci. 2003, 100-102, 503−546.  doi: 10.1016/S0001-8686(02)00069-6

    5. [5]

      Zou, Z. M.; Sun, Z. Y.; An, L. J. Studies on droplet size distributions during coalescence in immiscible polymer blends filled with silica nanoparticles. Chinese J. Polym. Sci. 2014, 32, 255−267.  doi: 10.1007/s10118-014-1411-3

    6. [6]

      Binks, B. P. Particles as surfactants-similarities and differences. Curr. Opin. Colloid Interface Sci. 2002, 7, 21−41.  doi: 10.1016/S1359-0294(02)00008-0

    7. [7]

      Arditty, S.; Schmitt, V.; Giermanska-Kahn, J.; Leal-Calderon, F. Materials based on solid-stabilized emulsions. J. Colloid Interface Sci. 2004, 275, 659−664.  doi: 10.1016/j.jcis.2004.03.001

    8. [8]

      Pang, K.; Ding, B. B.; Liu, X. T.; Wu, H.; Duan, Y. X.; Zhang, J. M. High-yield preparation of a zwitterionically charged chitin nanofiber and its application in a doubly pH-responsive Pickering emulsion. Green Chem. 2017, 19, 3665−3670.  doi: 10.1039/C7GC01592E

    9. [9]

      Yang, F.; Liu, S. Y.; Xu, J.; Lan, Q.; Wei, F.; Sun, D. J. Pickering emulsions stabilized solely by layered double hydroxides particles: the effect of salt on emulsion formation and stability. J. Colloid Interface Sci. 2006, 302, 159−169.  doi: 10.1016/j.jcis.2006.06.015

    10. [10]

      Tang, J. T.; Quinlan, P. J.; Tam, K. C. Stimuli-responsive Pickering emulsions: recent advances and potential applications. Soft Matter 2015, 11, 3512−3529.  doi: 10.1039/C5SM00247H

    11. [11]

      Björkegren, S.; Nordstierna, L.; Törncrona, A.; Palmqvist, A. Hydrophilic and hydrophobic modifications of colloidal silica particles for Pickering emulsions. J. Colloid Interface Sci. 2017, 487, 250−257.  doi: 10.1016/j.jcis.2016.10.031

    12. [12]

      Kim, J.; Cote, L. J.; Kim, F.; Yuan, W.; Shull, K. R.; Huang, J. X. Graphene oxide sheets at interfaces. J. Am. Chem. Soc. 2010, 132, 8180−8186.  doi: 10.1021/ja102777p

    13. [13]

      Cui, Z. G.; Cui, C. F.; Zhu, Y.; Binks, B. P. Multiple phase inversion of emulsions stabilized by in situ surface activation of CaCO3 nanoparticles via adsorption of fatty acids. Langmuir 2012, 28, 314−320.  doi: 10.1021/la204021v

    14. [14]

      Voorn, D. J.; Ming, W.; van Herk, A. M. Polymer-clay nanocomposite latex particles by inverse Pickering emulsion polymerization stabilized with hydrophobic montmorillonite platelets. Macromolecules 2006, 39, 2137−2143.  doi: 10.1021/ma052539t

    15. [15]

      Wei, D.; Ge, L. L.; Lu, S. H.; Li, J. J.; Guo, R. Janus particles templated by Janus emulsions and application as a Pickering emulsifier. Langmuir 2017, 33, 5819−5828.  doi: 10.1021/acs.langmuir.7b00939

    16. [16]

      Wei, W.; Wang, T.; Luo, J.; Zhu, Y.; Gu, Y.; Liu, X. Y. Pickering emulsions stabilized by self-assembled colloidal particles of amphiphilic branched random poly(styrene-co-acrylic acid). Colloids Surf. A: Physicochem. Eng. Aspects 2015, 487, 58−65.  doi: 10.1016/j.colsurfa.2015.09.060

    17. [17]

      Li, C.; Sun, P. D.; Yang, C. Emulsion stabilized by starch nanocrystals. Starch 2012, 64, 497−502.  doi: 10.1002/star.201100178

    18. [18]

      Kalashnikova, I.; Bizot, H.; Cathala, B.; Capron, I. New Pickering emulsions stabilized by bacterial cellulose nanocrystals. Langmuir 2011, 27, 7471−7479.  doi: 10.1021/la200971f

    19. [19]

      Fratzl, P.; Weinkamer, R. Nature’s hierarchical materials. Prog. Mater. Sci. 2007, 52, 1263−1334.  doi: 10.1016/j.pmatsci.2007.06.001

    20. [20]

      Tang, J. T.; Sisler, J.; Grishkewich, N.; Tam, K. C. Functionalization of cellulose nanocrystals for advanced applications. J. Colloid Interface Sci. 2017, 494, 397−409.  doi: 10.1016/j.jcis.2017.01.077

    21. [21]

      Gómez H, C.; Serpa, A.; Velásquez-Cock, J.; Gañán, P.; Castro, C.; Vélez, L.; Zuluaga, R. Vegetable nanocellulose in food science: a review. Food Hydrocolloids 2016, 57, 178−186.  doi: 10.1016/j.foodhyd.2016.01.023

    22. [22]

      Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 3941−3994.  doi: 10.1039/c0cs00108b

    23. [23]

      Mazeau, K.; Heux, L. Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose. J. Phys. Chem. B 2003, 107, 2394−2403.

    24. [24]

      Oza, K. P.; Frank, S. G. Microcrystalline cellulose stabilized emulsions. J. Dispersion Sci. Technol. 1986, 7, 543−561.  doi: 10.1080/01932698608943478

    25. [25]

      Li, X.; Ding, L.; Zhang, Y. C.; Wang, B. J.; Jiang, Y.; Feng, X. L.; Mao, Z. P.; Sui, X. F. Oil-in-water Pickering emulsions from three plant-derived regenerated celluloses. Carbohydr. Polym. 2019, 207, 755−763.  doi: 10.1016/j.carbpol.2018.12.037

    26. [26]

      Saelices, C. J.; Save, M.; Capron, I. Synthesis of latex stabilized by unmodified cellulose nanocrystals: the effect of monomers on particle size. Polym. Chem. 2019, 10, 727−737.  doi: 10.1039/C8PY01575A

    27. [27]

      Saelices, C. J.; Capron, I. Design of Pickering micro- and nanoemulsions based on the structural characteristics of nanocelluloses. Biomacromolecules 2018, 19, 460−469.  doi: 10.1021/acs.biomac.7b01564

    28. [28]

      Xu, H. N.; Li, Y. H.; Zhang, L. F. Driving forces for accumulation of cellulose nanofibrils at the oil/water interface. Langmuir 2018, 34, 10757−10763.  doi: 10.1021/acs.langmuir.8b02310

    29. [29]

      Bai, L.; Huan, S. Q.; Xiang, W. C.; Rojas, O. J. Pickering emulsions by combining cellulose nanofibrils and nanocrystals: phase behavior and depletion stabilization. Green Chem. 2018, 20, 1571−1582.  doi: 10.1039/C8GC00134K

    30. [30]

      Lee, K. Y.; Blaker, J. J.; Murakami, R.; Heng, J. Y. Y.; Bismarck, A. Phase behavior of medium and high internal phase water-in-oil emulsions stabilized solely by hydrophobized bacterial cellulose nanofibrils. Langmuir 2014, 30, 452−460.  doi: 10.1021/la4032514

    31. [31]

      Cunha, A. G.; Mougel, J. B.; Cathala, B.; Berglund, L. A.; Capron, I. Preparation of double Pickering emulsions stabilized by chemically tailored nanocelluloses. Langmuir 2014, 30, 9327−9335.  doi: 10.1021/la5017577

    32. [32]

      Kalashnikova, I.; Bizot, H.; Bertoncini, P.; Cathala, B.; Capron, I. Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions. Soft Matter 2013, 9, 952−959.  doi: 10.1039/C2SM26472B

    33. [33]

      Zhang, Y. F.; Karimkhani, V.; Makowski, B. T.; Samaranayake, G.; Rowan, S. J. Nanoemulsions and nanolatexes stabilized by hydrophobically functionalized cellulose nanocrystals. Macromolecules 2017, 50, 6032−6042.  doi: 10.1021/acs.macromol.7b00982

    34. [34]

      Habibi, Y.; Lucia, L. A.; Rojas, O. J. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 2010, 110, 3479−3500.  doi: 10.1021/cr900339w

    35. [35]

      Kalashnikova, I.; Bizot, H.; Cathala, B.; Capron, I. Modulation of cellulose nanocrystals amphiphilic properties to stabilize oil/water interface. Biomacromolecules 2012, 13, 267−275.  doi: 10.1021/bm201599j

    36. [36]

      Capron, I.; Cathala, B. Surfactant-free high internal phase emulsions stabilized by cellulose nanocrystals. Biomacromolecules 2013, 14, 291−296.  doi: 10.1021/bm301871k

    37. [37]

      Peddireddy, K. R.; Nicolai, T.; Benyahia, L.; Capron, I. Stabilization of water-in-water emulsions by nanorods. ACS Macro Lett. 2016, 5, 283−286.  doi: 10.1021/acsmacrolett.5b00953

    38. [38]

      Cherhal, F.; Cousin, F.; Capron, I. Structural description of the interface of Pickering emulsions stabilized by cellulose nanocrystals. Biomacromolecules 2016, 17, 496−502.  doi: 10.1021/acs.biomac.5b01413

    39. [39]

      Hu, Z.; Ballinger, S.; Pelton, R.; Cranston, E. D. Surfactant-enhanced cellulose nanocrystal Pickering emulsions. J. Colloid Interface Sci. 2015, 439, 139−148.  doi: 10.1016/j.jcis.2014.10.034

    40. [40]

      Saidane, D.; Perrin, E.; Cherhal, F.; Guellec, F.; Capron, I. Some modification of cellulose nanocrystals for functional Pickering emulsions. Philos. Trans. R. Soc., A 2016, 374, 20150139.  doi: 10.1098/rsta.2015.0139

    41. [41]

      Zoppe, J. O.; Venditti, R. A.; Rojas, O. J. Pickering emulsions stabilized by cellulose nanocrystals grafted with thermo-responsive polymer brushes. J. Colloid Interface Sci. 2012, 369, 202−209.  doi: 10.1016/j.jcis.2011.12.011

    42. [42]

      Tang, J. T.; Lee, M. F. X.; Zhang, W.; Zhao, B. X.; Berry, R. M.; Tam, K. C. Dual responsive pickering emulsion stabilized by poly[2-(dimethylamino)ethyl methacrylate] grafted cellulose nanocrystals. Biomacromolecules 2014, 15, 3052−3060.  doi: 10.1021/bm500663w

    43. [43]

      Gupta, A.; Eral, H. B.; Hatton, T. A.; Doyle, P. S. Nanoemulsions: formation, properties and applications. Soft Matter 2016, 12, 2826−2841.  doi: 10.1039/C5SM02958A

    44. [44]

      Fryd, M. M.; Mason, T. G. Advanced nanoemulsions. Annu. Rev. Phys. Chem. 2012, 63, 493−518.  doi: 10.1146/annurev-physchem-032210-103436

    45. [45]

      Arancibia, C.; Navarro-Lisboa, R.; Zúñiga, R. N.; Matiacevich, S. Application of CMC as thickener on nanoemulsions based on olive oil: physical properties and stability. Int. J. Polym. Sci. 2016, 2016, 1−10.

    46. [46]

      Singh, Y.; Meher, J. G.; Raval, K.; Khan, F. A.; Chaurasia, M.; Jain, N. K.; Chourasia, M. K. Nanoemulsion: concepts, development and applications in drug delivery. J. Control. Release 2017, 252, 28−49.  doi: 10.1016/j.jconrel.2017.03.008

    47. [47]

      Sonneville-Aubrun, O.; Simonnet, J. T.; L'Alloret, F. Nanoemulsions: a new vehicle for skincare products. Adv. Colloid Interface Sci. 2004, 108-109, 145−149.  doi: 10.1016/j.cis.2003.10.026

    48. [48]

      Bauer, K. N.; Tee, H. T.; Velencoso, M. M.; Wurm, F. R. Main-chain poly(phosphoester)s: history, syntheses, degradation, bio-and flame-retardant applications. Prog. Polym. Sci. 2017, 73, 61−122.  doi: 10.1016/j.progpolymsci.2017.05.004

    49. [49]

      Wang, H. R.; He, J. L.; Zhang, M. Z.; Tam, K. C.; Ni, P. H. A new pathway towards polymer modified cellulose nanocrystals via a “grafting onto” process for drug delivery. Polym. Chem. 2015, 6, 4206−4209.  doi: 10.1039/C5PY00466G

    50. [50]

      Zhang, S. Y.; Li, A.; Zou, J.; Lin, L. Y.; Wooley, K. L. Facile synthesis of clickable, water-soluble and degradable polyphosphoesters. ACS Macro Lett. 2012, 1, 328−333.  doi: 10.1021/mz200226m

    51. [51]

      Habibi, Y.; Chanzy, H.; Vignon, M. R. TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 2006, 13, 679−687.  doi: 10.1007/s10570-006-9075-y

    52. [52]

      Way, A. E.; Hsu, L.; Shanmuganathan, K.; Weder, C.; Rowan, S. J. pH-responsive cellulose nanocrystal gels and nanocomposites. ACS Macro Lett. 2012, 1, 1001−1006.  doi: 10.1021/mz3003006

  • 加载中
    1. [1]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, doi: 10.3866/PKU.DXHX202309094

    2. [2]

      Qin Li Ziyao Jia Ye Chen Mingze Ma Lin Li Tao Huang . A Journey into the Enigmatic World of Pickering Emulsion: A Chemical Science Popularization Experiment. University Chemistry, doi: 10.3866/PKU.DXHX202306035

    3. [3]

      Yujuan Zhao Zaiwang Zhao . Monolayer mesoporous nanosheets with surface asymmetry via a dual-emulsion-directed monomicelle assembly. Chinese Journal of Structural Chemistry, doi: 10.1016/j.cjsc.2024.100238

    4. [4]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, doi: 10.1016/j.cclet.2023.109090

    5. [5]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, doi: 10.1016/j.cclet.2024.109534

    6. [6]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, doi: 10.1016/j.cjsc.2023.100156

    7. [7]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, doi: 10.1016/j.cclet.2023.109327

    8. [8]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, doi: 10.1016/j.cclet.2023.109021

    9. [9]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, doi: 10.1016/j.cclet.2023.108753

    10. [10]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, doi: 10.1016/j.cclet.2023.109188

    11. [11]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, doi: 10.1016/j.cjsc.2023.100192

    12. [12]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, doi: 10.1016/j.cclet.2024.109863

Metrics
  • PDF Downloads(0)
  • Abstract views(3792)
  • HTML views(123)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return