A New Evaluation Criterion for Optimizing the Mechanical Properties of Toughened Polypropylene/Silica Nanocomposites

Hossein Pourrahmani Mona Golparvar Mohammad Fasihi

Citation:  Hossein Pourrahmani, Mona Golparvar, Mohammad Fasihi. A New Evaluation Criterion for Optimizing the Mechanical Properties of Toughened Polypropylene/Silica Nanocomposites[J]. Chinese Journal of Polymer Science, doi: 10.1007/s10118-020-2399-5 shu

A New Evaluation Criterion for Optimizing the Mechanical Properties of Toughened Polypropylene/Silica Nanocomposites

English


    1. [1]

      Maira, B.; Takeuchi, K.; Chammingkwan, P.; Terano, M.; Taniike, T. Thermal conductivity of polypropylene/aluminum oxide nanocomposites prepared based on reactor granule technology. Compos. Sci. Technol. 2018, 165, 259−265. doi: 10.1016/j.compscitech.2018.07.007

    2. [2]

      Xu, C.; Zheng, Z.; Wu, W.; Wang, Z.; Fu, L. Dynamically vulcanized PP/EPDM blends with balanced stiffness and toughness via in-situ compatibilization of MAA and excess ZnO nanoparticles: preparation, structure and properties. Compos. Part B Eng. 2019, 160, 147−157. doi: 10.1016/j.compositesb.2018.10.014

    3. [3]

      Aumnate, C.; Limpanart, S.; Soatthiyanon, N.; Khunton, S. PP/organoclay nanocomposites for fused filament fabrication (FFF) 3D printing. Express Polym. Lett. 2019, 13, 898−909. doi: 10.3144/expresspolymlett.2019.78

    4. [4]

      Shonaike, G. O.; Matsuo, T. Impregnation conditions on glass fiber reinforced thermoplastic polyster elastomer composites. J. Reinf. Plast. Compos. 1996, 15, 16−29. doi: 10.1177/073168449601500102

    5. [5]

      Shonaike, G. O.; Matsuo, T. Experimental analysis of relation between shear coupling element and bias angle of carbon fiber reinforced polyether-polyester elastomer composites. J. Reinf. Plast. Compos. 1997, 16, 217−225. doi: 10.1177/073168449701600302

    6. [6]

      Lee, J. W.; Kwon, T.; Kang, Y.; Han, T. H.; Cho, C. G.; Hong, S. M.; Hwang, S. W.; Koo, C. M. Styrenic block copolymer/sulfonated graphene oxide composite membranes for highly bendable ionic polymer actuators with large ion concentration gradient. Compos. Sci. Technol. 2018, 163, 63−70. doi: 10.1016/j.compscitech.2018.05.002

    7. [7]

      Paran, S. M. R.; Abdorahimi, M.; Shekarabi, A.; Khonakdar, H. A.; Jafari, S. H.; Saeb, M. R. Modeling and analysis of nonlinear elastoplastic behavior of compatibilized polyolefin/polyester/clay nanocomposites with emphasis on interfacial interaction exploration. Compos. Sci. Technol. 2018, 154, 92−103. doi: 10.1016/j.compscitech.2017.11.018

    8. [8]

      Sun, W. J.; Xu, L.; Jia, L. C.; Zhou, C. G.; Xiang, Y.; Yin, R. H.; Yan, D. X.; Tang, J. H.; Li, Z. M. Highly conductive and stretchable carbon nanotube/thermoplastic polyurethane composite for wearable heater. Compos. Sci. Technol. 2019, 181, 107695. doi: 10.1016/j.compscitech.2019.107695

    9. [9]

      Huang, Z. M. Characterization of knitted fabric reinforced elastomer composite. J. Reinf. Plast. Compos. 1999, 18, 118−137. doi: 10.1177/073168449901800202

    10. [10]

      Bajsić, E. G.; Šmit, I.; Leskovac M. Blends of thermoplastic polyurethane and polypropylene. I. Mechanical and phase behavior. J. Appl. Polym. Sci. 2007, 104, 3980−3985. doi: 10.1002/app.26222

    11. [11]

      Fasihi, M.; Mansouri, H. Effect of rubber interparticle distance distribution on toughening behavior of thermoplastic polyolefin elastomer toughened polypropylene. J. Appl. Polym. Sci. 2016, 133, 44068.

    12. [12]

      Liang, J. Z. Mechanical properties and morphology of polypropylene/poly(ethylene-co-octene) blends. J. Polym. Environ. 2012, 20, 872−878. doi: 10.1007/s10924-012-0441-6

    13. [13]

      Członka, S.; Strąkowska, A.; Strzelec, K.; Kairytė, A.; Vaitkus, S. Composites of rigid polyurethane foams and silica powder filler enhanced with ionic liquid. Polym. Test. 2019, 75, 12−25. doi: 10.1016/j.polymertesting.2019.01.021

    14. [14]

      Sahraeian, R.; Davachi, S. M.; Heidari, B. S. The effect of nanoperlite and its silane treatment on thermal properties and degradation of polypropylene/nanoperlite nanocomposite films. Compos. Part B Eng. 2019, 162, 103−111. doi: 10.1016/j.compositesb.2018.10.093

    15. [15]

      Davachi, S. M.; Heidari, B. S.; Sahraeian, R.; Abbaspourrad, A. The effect of nanoperlite and its silane treatment on the crystallinity, rheological, optical, and surface properties of polypropylene/nanoperlite nanocomposite films. Compos. Part B Eng. 2019, 175, 107088. doi: 10.1016/j.compositesb.2019.107088

    16. [16]

      Parimalam, M.; Islam, M. R.; Yunus, R. M. Effects of nanosilica, zinc oxide, titatinum oxide on the performance of epoxy hybrid nanocoating in presence of rubber latex. Polym. Test. 2018, 70, 197−207. doi: 10.1016/j.polymertesting.2018.07.008

    17. [17]

      Panaitescu, D. M.; Vuluga, Z.; Radovici, C.; Nicolae, C. Morphological investigation of PP/nanosilica composites containing SEBS. Polym. Test. 2012, 31, 355−365. doi: 10.1016/j.polymertesting.2011.12.010

    18. [18]

      Lee, S. H.; Kontopoulou, M.; Park, C. B. Effect of nanosilica on the co-continuous morphology of polypropylene/polyolefin elastomer blends. Polymer 2010, 51, 1147−1155. doi: 10.1016/j.polymer.2010.01.018

    19. [19]

      Liu, Y.; Kontopoulou, M. The structure and physical properties of polypropylene and thermoplastic olefin nanocomposites containing nanosilica. Polymer 2006, 47, 7731−7739. doi: 10.1016/j.polymer.2006.09.014

    20. [20]

      Canto, L. B. Aspects regarding the efficiency of nanosilica as an interfacial compatibilizer of a polypropylene/ethylene vinyl-acetate immiscible blend. Polym. Test. 2019, 73, 135−142. doi: 10.1016/j.polymertesting.2018.11.012

    21. [21]

      Liu, B.; Shangguan, Y.; Zheng, Q. Toughening of ethylene-propylene random copolymer/clay nanocomposites: Comparison of different compatibilizers. Chinese J. Polym. Sci. 2012, 30, 853−864. doi: 10.1007/s10118-012-1185-4

    22. [22]

      Ma, G.; Zhai, J.; Liu, B.; Huang, D.; Sheng, J. Plasma modification of polypropylene surfaces and grafting copolymerization of styrene onto polypropylene. Chinese J. Polym. Sci. 2012, 30, 423−435. doi: 10.1007/s10118-012-1130-6

    23. [23]

      Wang, L.; Jiang, Z.; Liu, F.; Zhang, Z.; Tang, T. Effects of branches on the crystallization kinetics of polypropylene-g-polystyrene and polypropylene-g-poly(n-butyl acrylate) graft copolymers with well-defined molecular structures. Chinese J. Polym. Sci. 2014, 32, 333−349. doi: 10.1007/s10118-014-1404-2

    24. [24]

      Bikiaris, D. N.; Vassiliou, A.; Pavlidou, E.; Karayannidis, G. P. Compatibilisation effect of PP-g-MA copolymer on iPP/SiO2 nanocomposites prepared by melt mixing. Eur. Polym. J. 2005, 41, 1965−1978. doi: 10.1016/j.eurpolymj.2005.03.008

    25. [25]

      Tessier, R.; Lafranche, E.; Krawczak, P. Development of novel melt-compounded starch-grafted polypropylene/polypropylene-grafted maleic anhydride/organoclay ternary hybrids. Express Polym. Lett. 2012, 6, 937−952. doi: 10.3144/expresspolymlett.2012.99

    26. [26]

      Bezerra, E. M.; Bento, M. S.; Rocco, J. A. F. F.; Iha, K.; Lourenço. V. L.; Pardini, L. C. Artificial neural network (ANN) prediction of kinetic parameters of (CRFC) composites. Comput. Mater. Sci. 2008, 44, 656−663. doi: 10.1016/j.commatsci.2008.05.002

    27. [27]

      Seyhan, A. T.; Tayfur, G.; Karakurt, M.; Tanoğlu, M. Artificial neural network (ANN) prediction of compressive strength of VARTM processed polymer composites. Comput. Mater. Sci. 2005, 34, 99−105. doi: 10.1016/j.commatsci.2004.11.001

    28. [28]

      Pourrahmani, H.; Moghimi, M.; Siavashi, M. Thermal management in PEMFCs: the respective effects of porous media in the gas flow channel. Int. J. Hydrog. Energy 2019, 44, 3121−3137. doi: 10.1016/j.ijhydene.2018.11.222

    29. [29]

      Pourrahmani, H.; Moghimi, M.; Siavashi, M.; Shirbani, M. Sensitivity analysis and performance evaluation of the PEMFC using wave-like porous ribs. Appl. Therm. Eng. 2019, 150, 433−444. doi: 10.1016/j.applthermaleng.2019.01.010

    30. [30]

      Pourrahmani, H.; Siavashi, M.; Moghimi, M. Design optimization and thermal management of the PEMFC using artificial neural networks. Energy 2019, 182, 443−459. doi: 10.1016/j.energy.2019.06.019

    31. [31]

      Nazari, A.; Riahi, S. Prediction split tensile strength and water permeability of high strength concrete containing TiO2 nanoparticles by artificial neural network and genetic programming. Compos. Part B Eng. 2011, 42, 473−488. doi: 10.1016/j.compositesb.2010.12.004

    32. [32]

      Câmara, E. C. B.; Freire, R. C. S. Using neural networks to modeling the transverse elasticity modulus of unidirectional composites. Compos. Part B Eng. 2011, 42, 2024−2029. doi: 10.1016/j.compositesb.2011.04.042

    33. [33]

      Liu, Q.; Li, H.; Yan, S. Structure and properties of β-polypropylene reinforced by polypropylene fiber and polyamide fiber. Chinese J. Polym. Sci. 2014, 32, 509−518. doi: 10.1007/s10118-014-1417-x

    34. [34]

      Zhu, H.; Du, M.; Xu, C.; Zhang, X.; Fu, Y. Organic-inorganic hybrid network constructed in polypropylene matrix and its reinforcing effects on polypropylene composites. J. Reinf. Plast. Compos. 2013, 32, 174−182. doi: 10.1177/0731684412467841

    35. [35]

      Saleeb, A. F.; Wilt, T. E.; Al-Zoubi, N. R.; Gendy, A. S. An anisotropic viscoelastoplastic model for composites—sensitivity analysis and parameter estimation. Compos. Part B Eng. 2003, 34, 21−39. doi: 10.1016/S1359-8368(02)00078-1

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1746
  • HTML全文浏览量:  114
文章相关
  • 发布日期:  2020-07-01
  • 收稿日期:  2019-11-11
  • 修回日期:  2020-01-14
  • 网络出版日期:  2020-04-15
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章