Citation: Gorkem Yilmaz, Yusuf Yagci. Mechanistic Transformations Involving Radical and Cationic Polymerizations[J]. Chinese Journal of Polymer Science, ;2020, 38(3): 205-212. doi: 10.1007/s10118-020-2367-0 shu

Mechanistic Transformations Involving Radical and Cationic Polymerizations

  • Corresponding author: Yusuf Yagci, yusuf@itu.edu.tr
  • Received Date: 1 October 2019
    Revised Date: 28 October 2019
    Available Online: 27 November 2019

  • Mechanistic transformation approach has been widely applied in polymer synthesis due to its unique feature combining structurally different polymers prepared by different polymerization mechanisms. Reported methods for the formation of block and graft copolymers through mechanistic transformation involve almost all polymerizations modes. However, certain polymerization processes require extensive purification processes, which can be time-consuming and problematic. Recent developments on controlled/living polymerizations involving radical and cationic mechanisms with the ability to control molecular weight and functionality led to new pathways for mechanistic transformations. In this mini-review, we systematically discussed relevant advances in the field through three main titles namely (i) from radical to cationic mechanism, (ii) from cationic to radical mechanism, and (iii) application of specific catalyst systems for both radical and cationic polymerizations.
  • 加载中
    1. [1]

      Braunecker, W. A.; Matyjaszewski, K. Controlled/living radical polymerization: Features, developments, and perspectives. Prog. Polym. Sci. 2007, 32, 93−146.  doi: 10.1016/j.progpolymsci.2006.11.002

    2. [2]

      Wang, J. S.; Matyjaszewski, K. Controlled/"living" radical polymerization. Halogen atom-transfer radical polymerization promoted by a Cu(I)Cu(II) redox process. Macromolecules 1995, 28, 7901−7910.  doi: 10.1021/ma00127a042

    3. [3]

      Hawker, C. J.; Bosman, A. W.; Harth, E. New polymer synthesis by nitroxide mediated living radical polymerizations. Chem. Rev. 2001, 101, 3661−3688.  doi: 10.1021/cr990119u

    4. [4]

      Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H. Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules 1998, 31, 5559−5562.  doi: 10.1021/ma9804951

    5. [5]

      Sawamoto, M. Modern cationic vinyl polymerization. Prog. Polym. Sci. 1991, 16, 111−172.  doi: 10.1016/0079-6700(91)90008-9

    6. [6]

      Kamigaito, M.; Ando, T.; Sawamoto, M. Metal-catalyzed living radical polymerization. Chem. Rev. 2001, 101, 3689−3745.  doi: 10.1021/cr9901182

    7. [7]

      Guo, X.; Choi, B.; Feng, A.; Thang, S. H. Polymer synthesis with more than one form of living polymerization method. Macromol. Rapid Commun. 2018, 39, 1800479.  doi: 10.1002/marc.201800479

    8. [8]

      Higashimura, T.; Aoshima, S.; Sawamoto, M. New initiators for living cationic polymerization of vinyl compounds. Makromol. Chem. Makromol. Symp. 1988, 13-4, 457−471.

    9. [9]

      Sawamoto, M.; Okamoto, C.; Higashimura, T. Hydrogen iodide zinc iodide—a new initiating system for living cationic polymerization of vinyl ethers at room-temperature. Macromolecules 1987, 20, 2693−2697.  doi: 10.1021/ma00177a010

    10. [10]

      Yagci, Y.; Schnabel, W. Light-induced cationic polymerization. Makromol. Chem. Macromol. Symp. 1988, 13-14, 161−174.  doi: 10.1002/masy.19880130113

    11. [11]

      Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 2001, 40, 2004−2021.  doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5

    12. [12]

      Barner-Kowollik, C.; Du Prez, F. E.; Espeel, P.; Hawker, C. J.; Junkers, T.; Schlaad, H.; van Camp, W. "Clicking" polymers or just efficient linking: what is the difference? Angew. Chem. Int. Ed. 2011, 50, 60−62.  doi: 10.1002/anie.201003707

    13. [13]

      Yagci, Y.; Tasdelen, M. A. Mechanistic transformations involving living and controlled/living polymerization methods. Prog. Polym. Sci. 2006, 31, 1133−1170.  doi: 10.1016/j.progpolymsci.2006.07.003

    14. [14]

      Burgess, F. J.; Cunliffe, A. V.; MacCallum, J. R.; Richards, D. H. Reactions to effect the transformation of anionic polymerization into cationic polymerization: 2. Synthesis and reactivities of anionically generated xylelene bromide-terminated polymers. Polymer 1977, 18, 726−732.

    15. [15]

      Burgess, F. J.; Cunliffe, A. V.; MacCallum, J. R.; Richards, D. H. Reaction to effect the transformation of anionic polymerization into cationic polymerization: 1. Synthesis and reactivities of anionically generated bromine terminated polymers. Polymer 1977, 18, 719−725.

    16. [16]

      Schäfer, M.; C., Wieland P.; Nuyken, O. Synthesis of new graft copolymers containing polyisobutylene by a combination of the 1,1-diphenylethylene technique and cationic polymerization. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 3725−3733.  doi: 10.1002/pola.10472

    17. [17]

      Düz, A. B.; Hizal, G.; Yagci, Y. Block copolymers by transformation of living ring opening polymerization into an initer process. Eur. Polym. J. 2000, 36, 1373−1378.  doi: 10.1016/S0014-3057(99)00189-5

    18. [18]

      Kumagai, S.; Nagai, K.; Satoh, K.; Kamigaito, M. In-situ direct mechanistic transformation from raft to living cationic polymerization for (meth)acrylate-vinyl ether block copolymers. Macromolecules 2010, 43, 7523−7531.  doi: 10.1021/ma101420u

    19. [19]

      Kahveci, M. U.; Acik, G.; Yagci, Y. Synthesis of block copolymers by combination of atom transfer radical polymerization and visible light-induced free radical promoted cationic polymerization. Macromol. Rapid Commun. 2012, 33, 309−313.  doi: 10.1002/marc.201100641

    20. [20]

      Yagci, Y. Block copolymers by combinations of cationic and radical routes 1. A new difunctional azo-oxocarbenium initiator for cationic polymerization. Polym. Commun. 1985, 26, 7−8.

    21. [21]

      Galli, G.; Chiellini, E.; Yagci, Y.; Serhatli, E. I.; Laus, M.; Bignozzi, M. C.; Angeloni, A. S. Block copolymers with crystalline and side-chain liquid crystalline blocks. Makromol. Chem. Rapid Commun. 1993, 14, 185−193.  doi: 10.1002/marc.1993.030140307

    22. [22]

      Hizal, G.; Tasdemir, H.; Yagci, Y. Block copolymers by combination of cationic and radical routes: 5. Polymerization of styrene initiated by 4,4′-azobis(4-cyanopentanoyl chloride). Polymer 1990, 31, 1803−1806.

    23. [23]

      Yagci, Y.; Onen, A.; Schnabel, W. Block copolymers by combination radical and promoted cationic polymerization routes. Macromolecules 1991, 24, 4620−4623.  doi: 10.1021/ma00016a023

    24. [24]

      Hepuzer, Y.; Yagci, Y.; Biedron, T.; Kubisa, P. Photoactive epichlorohydrin 2. Photoinitiated free-radical and promoted cationic polymerization by using polyepichlorohydrin with benzoin terminal groups. Angew. Makromol. Chem. 1996, 237, 163−171.

    25. [25]

      Onen, A.; Yagci, Y.; Schnabel, W. Synthesis of benzoin terminated poly(tetrahydrofuran)s. Angew. Makromol. Chem. 1996, 243, 143−149.  doi: 10.1002/apmc.1996.052430112

    26. [26]

      Hizal, G.; Yagci, Y.; Schnabel, W. N-alkoxy pyridinium ion terminated polytetrahydrofurans—synthesis and their use in photoinitiated block copolymerization. Polymer 1994, 35, 4443−4448.  doi: 10.1016/0032-3861(94)90105-8

    27. [27]

      Le, D.; Phan, T. N. T.; Autissier, L.; Charles, L.; Gigmes, D. A well-defined block copolymer synthesis via living cationic polymerization and nitroxide-mediated polymerization using carboxylic acid-based alkoxyamines as a dual initiator. Polym. Chem. 2016, 7, 1659−1667.  doi: 10.1039/C5PY01934F

    28. [28]

      Yamada, K.; Miyazaki, M.; Ohno, K.; Fukuda, T.; Minoda, M. Atom transfer radical polymerization of poly(vinyl ether) macromonomers. Macromolecules 1999, 32, 290−293.  doi: 10.1021/ma981415w

    29. [29]

      Li, M.; Zhang, L.; Tao, M.; Cheng, Z.; Zhu, X. Living cationic polymerization of bisazobenzene-containing vinyl ether and synthesis of a graft copolymer by combination with ATRP. Polym. Chem. 2014, 5, 4076−4082.  doi: 10.1039/C4PY00162A

    30. [30]

      Zhu, Y.; Storey, R. F. Synthesis of polyisobutylene-based miktoarm star polymers from a dicationic monoradical dual initiator. Macromolecules 2012, 45, 5347−5357.  doi: 10.1021/ma3007762

    31. [31]

      Sugihara, S.; Konegawa, N.; Maeda, Y. HCl·Et2O-catalyzed metal-free RAFT cationic polymerization: one-pot transformation from metal-free living cationic polymerization to RAFT radical polymerization 1. Macromolecules 2015, 48, 5120−5131.  doi: 10.1021/acs.macromol.5b01071

    32. [32]

      Sugihara, S.; Yamashita, K.; Matsuzuka, K.; Ikeda, I.; Maeda, Y. Transformation of living cationic polymerization of vinyl ethers to RAFT polymerization mediated by a carboxylic RAFT agent. Macromolecules 2012, 45, 794−804.  doi: 10.1021/ma201988n

    33. [33]

      Yoshida, E.; Sugita, A. Synthesis of poly(tetrahydrofuran) with a nitroxyl radical at the chain end and its application to living radical polymerization. Macromolecules 1996, 29, 6422−6426.  doi: 10.1021/ma9605210

    34. [34]

      Yildirim, T. G.; Hepuzer, Y.; Hizal, G.; Yagci, Y. Synthesis of block copolymers by transformation of photosensitized cationic polymerization to stable free radical polymerization. Polymer 1999, 40, 3885−3890.  doi: 10.1016/S0032-3861(98)00633-8

    35. [35]

      Kajiwara, A.; Matyjaszewski, K. Formation of block copolymers by transformation of cationic ring-opening polymerization to atom transfer radical polymerization (ATRP). Macromolecules 1998, 31, 3489−3493.  doi: 10.1021/ma971445j

    36. [36]

      Puglisi, A.; Murtezi, E.; Yilmaz, G.; Yagci, Y. Synthesis of block copolymers by mechanistic transformation from photoinitiated cationic polymerization to a RAFT process. Polym. Chem. 2017, 8, 7307−7310.  doi: 10.1039/C7PY01707C

    37. [37]

      Uchiyama, M.; Satoh, K.; Kamigaito, M. Cationic RAFT polymerization using ppm concentrations of organic acid. Angew. Chem. Int. Ed. 2015, 54, 1924−1928.  doi: 10.1002/anie.201410858

    38. [38]

      Ciftci, M.; Yoshikawa, Y.; Yagci, Y. Living cationic polymerization of vinyl ethers through a photoinduced radical oxidation/addition/deactivation sequence. Angew. Chem. Int. Ed. 2017, 56, 519−523.  doi: 10.1002/anie.201609357

    39. [39]

      Ciftci, M.; Yagci, Y. Block copolymers by mechanistic transformation from proad to iniferter process. Macromol. Rapid Commun. 2018, 39.

    40. [40]

      Li, J.; Zhang, M.; Pan, X.; Zhang, Z.; Perrier, S.; Zhu, J.; Zhu, X. Visible light induced controlled cationic polymerization by in situ generated catalyst from manganese carbonyl. Chem. Commun. 2019, 55, 7045−7048.  doi: 10.1039/C9CC03317C

    41. [41]

      Aoshima, H.; Satoh, K.; Kamigaito, M. In situ direct mechanistic transformation from FeCl3-catalyzed living cationic to radical polymerizations. Macromol. Symp. 2013, 323, 64−74.  doi: 10.1002/masy.201100115

    42. [42]

      Satoh, K.; Hashimoto, H.; Kumagai, S.; Aoshima, H.; Uchiyama, M.; Ishibashi, R.; Fujiki, Y.; Kamigaito, M. One-shot controlled/living copolymerization for various comonomer sequence distributions via dual radical and cationic active species from RAFT terminals. Polym. Chem. 2017, 8, 5002−5011.  doi: 10.1039/C7PY00324B

    43. [43]

      Peterson, B. M.; Kottisch, V.; Supej, M. J.; Fors, B. P. On demand switching of polymerization mechanism and monomer selectivity with orthogonal stimuli. ACS Cent. Sci. 2018, 4, 1228−1234.  doi: 10.1021/acscentsci.8b00401

    44. [44]

      Uchiyama, M.; Satoh, K.; McKenzie, T. G.; Fu, Q.; Qiao, G. G.; Kamigaito, M. Diverse approaches to star polymers via cationic and radical RAFT cross-linking reactions using mechanistic transformation. Polym. Chem. 2017, 8, 5972−5981.  doi: 10.1039/C7PY01401E

    45. [45]

      Guerre, M.; Uchiyama, M.; Folgado, E.; Semsarilar, M.; Ameduri, B.; Satoh, K.; Kamigaito, M.; Ladmiral, V. Combination of cationic and radical RAFT polymerizations: a versatile route to well-defined poly(ethyl vinyl ether)-block-poly(vinylidene fluoride) block copolymers. ACS Macro Lett. 2017, 6, 393−398.  doi: 10.1021/acsmacrolett.7b00150

    46. [46]

      Guerre, M.; Uchiyama, M.; Lopez, G.; Ameduri, B.; Satoh, K.; Kamigaito, M.; Ladmiral, V. Synthesis of PEVE-b-P(CTFE-alt-EVE) block copolymers by sequential cationic and radical RAFT polymerization. Polym. Chem. 2018, 9, 352−361.  doi: 10.1039/C7PY01924F

    47. [47]

      Aoshima, H.; Uchiyama, M.; Satoh, K.; Kamigaito, M. Interconvertible living radical and cationic polymerization through reversible activation of dormant species with dual activity. Angew. Chem. Int. Ed. 2014, 53, 10932−10936.  doi: 10.1002/anie.201406590

  • 加载中
    1. [1]

      Shaojie DengPeihua MaQinghong BaiXin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878

    2. [2]

      Wenbi WuYinchu DongHaofan LiuXuebing JiangLi LiYi ZhangMaling Gou . Modification of plasma protein for bioprinting via photopolymerization. Chinese Chemical Letters, 2024, 35(8): 109260-. doi: 10.1016/j.cclet.2023.109260

    3. [3]

      Yi ZhuJingyan ZhangYuchao ZhangYing ChenGuanghui AnRen Liu . Designing unimolecular photoinitiator by installing NHPI esters along the TX backbone for acrylate photopolymerization and their applications in coatings and 3D printing. Chinese Chemical Letters, 2024, 35(7): 109573-. doi: 10.1016/j.cclet.2024.109573

    4. [4]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    5. [5]

      Qian WuMengda XuTianjiao MaShuzhen YanJin LiXuesong Jiang . Chalcone-derived oxime esters with efficient photoinitiation properties under LED irradiation. Chinese Chemical Letters, 2025, 36(3): 110427-. doi: 10.1016/j.cclet.2024.110427

    6. [6]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    7. [7]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    8. [8]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    9. [9]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    10. [10]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    11. [11]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    12. [12]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    13. [13]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    14. [14]

      Yin-Hang Chai Li-Long Dang . New structural breakthrough and topological transformation of homogeneous metalla[4]catenane compounds. Chinese Journal of Structural Chemistry, 2024, 43(10): 100322-100322. doi: 10.1016/j.cjsc.2024.100322

    15. [15]

      Jianqiu LiYi ZhangSongen LiuJie NiuRong ZhangYong ChenYu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645

    16. [16]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    17. [17]

      Rongjian ChenJiahui LiuCaixia LinYuanming LiYanhou GengYaofeng Yuan . Synthesis and properties of tetraphenylethene cationic cyclophanes based on o-carborane skeleton. Chinese Chemical Letters, 2024, 35(12): 110074-. doi: 10.1016/j.cclet.2024.110074

    18. [18]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    19. [19]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    20. [20]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

Metrics
  • PDF Downloads(0)
  • Abstract views(914)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return