Citation: Cong-Shu Feng, Yun Chen, Jun Shao, Gao Li, Hao-Qing Hou. The Crystallization and Melting Behaviors of PDLA-b-PBS-b-PDLA Tri-block Copolymers[J]. Chinese Journal of Polymer Science, ;2020, 38(3): 298-310. doi: 10.1007/s10118-020-2361-6 shu

The Crystallization and Melting Behaviors of PDLA-b-PBS-b-PDLA Tri-block Copolymers

  • In this study, the poly(D-lactide)-block-poly(butylene succinate)-block-poly(D-lactide) (PDLA-b-PBS-b-PDLA) triblock copolymers with a fixed length of PBS and various lengths of PDLA are synthesized, and the crystallization behaviors of the PDLA and PBS blocks are investigated. Although both the crystallization behaviors of PBS and PDLA blocks depend on composition, they exhibit different variations. For the PDLA block, its crystallization behaviors are mainly influenced by temperature and block length. The crystallization signals of PDLA block appear in the B-D 2-2 specimen, and these signals get enhanced with PDLA block length. The crystallization rates tend to decrease with increasing PDLA block lendth during crystallizing at 90 and 100 °C. Crystallizing at higher temperature, the crystallization rates increase at first and then decrease with block length. The crystallization rates decrease as elevating the crystallization temperature. The melting temperatures of PDLA blocks increase with block lengths and crystallization temperatures. For the PBS block, its crystallization behaviors are mainly controlled by the nucleation and confinement from PDLA block. The crystallization and melting enthalpies as well as the crystallization and melting temperatures of PBS block reduce as a longer PDLA block has been copolymerized, while the crystallization rates of the PBS block exhibit unique component dependence, and the highest rate is observed in the B-D 2-2 specimen. The Avrami exponent of PBS crystallites is reduced as a longer PDLA block is incorporated or the sample is crystallized at higher temperature. This investigation provides a convenient route to tune the crystallization behavior of PBS and PLA.
  • 加载中
    1. [1]

      Madhavan Nampoothiri, K.; Nair, N. R.; John, R. P. An overview of the recent developments in polylactide (PLA) research. Bioresource Technol. 2010, 101, 8493−8501.  doi: 10.1016/j.biortech.2010.05.092

    2. [2]

      Inkinen, S.; Hakkarainen, M.; Albertsson, A. C.; Södergård, A. From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors. Biomacromolecules 2011, 12, 523−532.  doi: 10.1021/bm101302t

    3. [3]

      Jem, K. J.; van der Pol, J.; de Vos, S. Microbial lactic acid, its polymer poly(lactic acid), and their industrial applications. In Plastics from Bacteria, Ed. by Chen, G. G. Q. Springer Berlin Heidelberg, 2010, Vol. 14, pp. 323−346.

    4. [4]

      Pang, X.; Zhuang, X.; Tang, Z.; Chen, X. Polylactic acid (PLA): research, development and industrialization. Biotechnol. J. 2010, 5, 1125−1136.  doi: 10.1002/biot.201000135

    5. [5]

      Saeidlou, S.; Huneault, M. A.; Li, H.; Park, C. B. Poly(lactic acid) crystallization. Prog. Polym. Sci. 2012, 37, 1657−1677.  doi: 10.1016/j.progpolymsci.2012.07.005

    6. [6]

      Xu, J.; Guo, B. H. Poly(butylene succinate) and its copolymers: research, development and industrialization. Biotechnol. J. 2010, 5, 1149−1163.  doi: 10.1002/biot.201000136

    7. [7]

      Gigli, M.; Fabbri, M.; Lotti, N.; Gamberini, R.; Rimini, B.; Munari, A. Poly(butylene succinate)-based polyesters for biomedical applications: a review. Eur. Polym. J. 2016, 75, 431−460.  doi: 10.1016/j.eurpolymj.2016.01.016

    8. [8]

      Deng, Y.; Thomas, N. L. Blending poly(butylene succinate) with poly(lactic acid): ductility and phase inversion effects. Eur. Polym. J. 2015, 71, 534−546.  doi: 10.1016/j.eurpolymj.2015.08.029

    9. [9]

      Wuk, P. J.; Soon, I. S. Phase behavior and morphology in blends of poly(L-lactic acid) and poly(butylene succinate). J. Appl. Polym. Sci. 2002, 86, 647−655.  doi: 10.1002/app.10923

    10. [10]

      Wu, D.; Yuan, L.; Laredo, E.; Zhang, M.; Zhou, W. Interfacial properties, viscoelasticity, and thermal behaviors of poly(butylene succinate)/polylactide blend. Ind. Eng. Chem. Res. 2012, 51, 2290−2298.  doi: 10.1021/ie2022288

    11. [11]

      Yokohara, T.; Yamaguchi, M. Structure and properties for biomass-based polyester blends of PLA and PBS. Eur. Polym. J. 2008, 44, 677−685.  doi: 10.1016/j.eurpolymj.2008.01.008

    12. [12]

      Stoyanova, N.; Paneva, D.; Mincheva, R.; Toncheva, A.; Manolova, N.; Dubois, P.; Rashkov, I. Poly(L-lactide) and poly(butylene succinate) immiscible blends: from electrospinning to biologically active materials. Mater. Sci. Eng. C 2014, 41, 119−126.  doi: 10.1016/j.msec.2014.04.043

    13. [13]

      Olivier, P.; Robert, Q.; Yahia, L.; John, S.; Stuart, M.; Leïla, B.; Philippe, D. Reactive compatibilization of poly(L-lactide)/poly(butylene succinate) blends through polyester maleation: From materials to properties. Polym. Int. 2014, 63, 1724−1731.  doi: 10.1002/pi.4700

    14. [14]

      Chen, G. X.; Kim, H. S.; Kim, E. S.; Yoon, J. S. Compatibilization-like effect of reactive organoclay on the poly(L-lactide)/poly(butylene succinate) blends. Polymer 2005, 46, 11829−11836.  doi: 10.1016/j.polymer.2005.10.056

    15. [15]

      Tadashi, Y.; Kenzo, O.; Masayuki, Y. Effect of the shape of dispersed particles on the thermal and mechanical properties of biomass polymer blends composed of poly(L-lactide) and poly(butylene succinate). J. Appl. Polym. Sci. 2010, 117, 2226−2232.  doi: 10.1002/app.31959

    16. [16]

      Zhang, X.; Zhang, Y. Reinforcement effect of poly(butylene succinate) (PBS)-grafted cellulose nanocrystal on toughened PBS/polylactic acid blends. Carbohyd. Polym. 2016, 140, 374−382.  doi: 10.1016/j.carbpol.2015.12.073

    17. [17]

      Masaki, H.; Tsubasa, O.; Kouji, I.; Hideki, H.; Koji, H.; Hiroyuki, F. Increased impact strength of biodegradable poly(lactic acid)/poly(butylene succinate) blend composites by using isocyanate as a reactive processing agent. J. Appl. Polym. Sci. 2007, 106, 1813−1820.  doi: 10.1002/app.26717

    18. [18]

      Zhang, B.; Bian, X.; Xiang, S.; Li, G.; Chen, X. Synthesis of PLLA-based block copolymers for improving melt strength and toughness of PLLA by in situ reactive blending. Polym. Degrad. Stab. 2017, 136, 58−70.  doi: 10.1016/j.polymdegradstab.2016.11.022

    19. [19]

      Valerio, O.; Misra, M.; Mohanty, A. K. Statistical design of sustainable thermoplastic blends of poly(glycerol succinate-co-maleate) (PGSMA), poly(lactic acid) (PLA) and poly(butylene succinate) (PBS). Polym. Test. 2018, 65, 420−428.  doi: 10.1016/j.polymertesting.2017.12.018

    20. [20]

      Supthanyakul, R.; Kaabbuathong, N.; Chirachanchai, S. Poly(L-lactide-b-butylene succinate-b-L-lactide) triblock copolymer: a multi-functional additive for PLA/PBS blend with a key performance on film clarity. Polym. Degrad. Stab. 2017, 142, 160−168.  doi: 10.1016/j.polymdegradstab.2017.05.029

    21. [21]

      Supthanyakul, R.; Kaabbuathong, N.; Chirachanchai, S. Random poly(butylene succinate-co-lactic acid) as a multi-functional additive for miscibility, toughness, and clarity of PLA/PBS blends. Polymer 2016, 105, 1−9.  doi: 10.1016/j.polymer.2016.10.006

    22. [22]

      Liu, Y.; Shao, J.; Sun, J.; Bian, X.; Chen, Z.; Li, G.; Chen, X. Toughening effect of poly(D-lactide)-b-poly(butylene succinate)-b-poly(D-lactide) copolymers on poly(L-lactic acid) by solution casting method. Mater. Lett. 2015, 155, 94−96.  doi: 10.1016/j.matlet.2015.04.124

    23. [23]

      Kawai, T.; Rahman, N.; Matsuba, G.; Nishida, K.; Kanaya, T.; Nakano, M.; Okamoto, H.; Kawada, J.; Usuki, A.; Honma, N. Crystallization and melting behavior of poly(L-lactic acid). Macromolecules 2007, 40, 9463−9469.  doi: 10.1021/ma070082c

    24. [24]

      Li, S. Non-isothermal crystallization kinetics of poly(L-lactide). Polym. Int. 2010, 59, 1616.  doi: 10.1002/pi.2894

    25. [25]

      Xiang, S.; Jun, S.; Li, G.; Bian, X. C.; Feng, L. D.; Chen, X. S.; Liu, F. Q.; Huang, S. Y. Effects of molecular weight on the crystallization and melting behaviors of poly(L-lactide). Chinese J. Polym. Sci. 2016, 34, 69−76.  doi: 10.1007/s10118-016-1727-2

    26. [26]

      Liu, X. Q.; Li, C. C.; Zhang, D.; Xiao, Y. N. Melting behaviors, crystallization kinetics, and spherulitic morphologies of poly(butylene succinate) and its copolyester modified with rosin maleopimaric acid anhydride. J. Polym. Sci., Part B: Polym. Phys. 2006, 44, 900−913.

    27. [27]

      Gan, Z.; Abe, H.; Kurokawa, H.; Doi, Y. Solid-state microstructures, thermal properties, and crystallization of biodegradable poly(butylene succinate) (PBS) and its copolyesters. Biomacromolecules 2001, 2, 605−613.  doi: 10.1021/bm015535e

    28. [28]

      Park, J. W.; Kim, D. K.; Im, S. S. Crystallization behaviour of poly(butylene succinate) copolymers. Polym. Int. 2002, 51, 239−244.  doi: 10.1002/pi.848

    29. [29]

      Park, S. B.; Hwang, S. Y.; Moon, C. W.; Im, S. S.; Yoo, E. S. Plasticizer effect of novel PBS ionomer in PLA/PBS ionomer blends. Macromol. Res. 2010, 18, 463−471.  doi: 10.1007/s13233-010-0512-2

    30. [30]

      Pivsa-Art, W.; Fujii, K.; Nomura, K.; Aso, Y.; Ohara, H.; Yamane, H. Isothermal crystallization kinetics of talc-filled poly(lactic acid) and poly(butylene succinate) blends. J. Polym. Res. 2016, 23, 144.  doi: 10.1007/s10965-016-1045-y

    31. [31]

      Ba, C.; Yang, J.; Hao, Q.; Liu, X.; Cao, A. Syntheses and physical characterization of new aliphatic triblock poly(L-lactide-b-butylene succinate-b-L-lactide)s bearing soft and hard biodegradable building blocks. Biomacromolecules 2003, 4, 1827−1834.  doi: 10.1021/bm034235p

    32. [32]

      Lan, X.; Li, X.; Liu, Z.; He, Z.; Yang, W.; Yang, M. Composition, morphology and properties of poly(lactic acid) and poly(butylene succinate) copolymer system via coupling reaction. J. Macromol. Sci. 2013, 50, 861−870.  doi: 10.1080/10601325.2013.802196

    33. [33]

      Lin, J.; Yin, L. Z.; Li, Y.; Li, Q. B.; Yang, J.; Yu, J. Y.; Shi, Z.; Fang, Q.; Cao, A. New enantiomeric polylactide-block-poly(butylene succinate)-block-polylactides: syntheses, characterization and in situ self-assembly. Macromol. Biosci. 2005, 5, 526−538.  doi: 10.1002/mabi.200400227

    34. [34]

      Zeng, J. B.; Li, Y. D.; Zhu, Q. Y.; Yang, K. K.; Wang, X. L.; Wang, Y. Z. A novel biodegradable multiblock poly(ester urethane) containing poly(L-lactic acid) and poly(butylene succinate) blocks. Polymer 2009, 50, 1178−1186.  doi: 10.1016/j.polymer.2009.01.001

    35. [35]

      Müller, A. J.; Balsamo, V.; Arnal, M. L. Nucleation and crystallization in diblock and triblock copolymers. In Block copolymers II, Abetz, V., 1st Ed. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005, pp. 1−63.

    36. [36]

      Castillo, R. V.; Müller, A. J.; Raquez, J. M.; Dubois, P. Crystallization kinetics and morphology of biodegradable double crystalline PLLA-b-PCL diblock copolymers. Macromolecules 2010, 43, 4149−4160.  doi: 10.1021/ma100201g

    37. [37]

      Castillo, R. V.; Müller, A. J. Crystallization and morphology of biodegradable or biostable single and double crystalline block copolymers. Prog. Polym. Sci. 2009, 34, 516−560.  doi: 10.1016/j.progpolymsci.2009.03.002

    38. [38]

      Zhou, D.; Shao, J.; Li, G.; Sun, J.; Bian, X.; Chen, X. Crystallization behavior of PEG/PLLA block copolymers: effect of the different architectures and molecular weights. Polymer 2015, 62, 70−76.  doi: 10.1016/j.polymer.2015.02.019

    39. [39]

      Chen, C. H.; Peng, J. S.; Chen, M.; Lu, H. Y.; Tsai, C. J.; Yang, C. S. Synthesis and characterization of poly(butylene succinate) and its copolyesters containing minor amounts of propylene succinate. Colloid Polym. Sci. 2010, 288, 731−738.  doi: 10.1007/s00396-010-2187-9

    40. [40]

      Shao, J.; Tang, Z. H.; Sun, J. R.; Li, G.; Chen, X. S. Linear and four-armed poly(L-lactide)-block-poly(D-lactide) copolymers and their stereocomplexation with poly(lactide)s. J. Polym. Sci., Part B: Polym. Phys. 2014, 52, 1560−1567.

    41. [41]

      Avrami, M. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J. Chem. Phys. 1940, 8, 212−224.  doi: 10.1063/1.1750631

    42. [42]

      Avrami, M. Kinetics of phase change. I. General theory. J. Chem. Phys. 1939, 7, 1103−1112.  doi: 10.1063/1.1750380

    43. [43]

      Yin, H. Y.; Wei, X. F.; Bao, R. Y.; Dong, Q. X.; Liu, Z. Y.; Yang, W.; Xie, B. H.; Yang, M. B. High-melting-point crystals of poly(L-lactic acid) (PLLA): the most efficient nucleating agent to enhance the crystallization of PLLA. CrystEngComm 2015, 17, 2310−2320.  doi: 10.1039/C4CE02497D

    44. [44]

      Huang, C. I.; Tsai, S. H.; Chen, C. M. Isothermal crystallization behavior of poly(L-lactide) in poly(L-lactide)-block-poly(ethylene glycol) diblock copolymers. J. Polym. Sci., Part B: Polym. Phys. 2006, 44, 2438−2448.  doi: 10.1002/polb.20890

    45. [45]

      Yang, J.; Zhao, T.; Liu, L.; Zhou, Y.; Li, G.; Zhou, E.; Chen, X. Isothermal crystallization behavior of the poly(L-lactide) block in poly(L-lactide)-poly(ethylene glycol) diblock copolymers: influence of the PEG block as a diluted solvent. Polym. J. 2006, 38, 1251−1257.  doi: 10.1295/polymj.PJ2006094

    46. [46]

      Yang, J.; Zhao, T.; Cui, J.; Liu, L.; Zhou, Y.; Li, G.; Zhou, E.; Chen, X. Nonisothermal crystallization behavior of the poly(ethylene glycol) block in poly(L-lactide)-poly(ethylene glycol) diblock copolymers: Effect of the poly(L-lactide) block length. J. Polym. Sci., Part B: Polym. Phys. 2006, 44, 3215−3226.  doi: 10.1002/polb.20886

    47. [47]

      Hamley, I. W.; Castelletto, V.; Castillo, R. V.; Müller, A. J.; Martin, C. M.; Pollet, E.; Dubois, P. Crystallization in poly(L-lactide)-b-poly(ε-caprolactone) double crystalline diblock copolymers: a study using X-ray scattering, differential scanning calorimetry, and polarized optical microscopy. Macromolecules 2005, 38, 463−472.  doi: 10.1021/ma0481499

    48. [48]

      Hu, J.; Xin, R.; Hou, C. Y.; Yan, S. K.; Liu, J. C. Direct comparison of crystal nucleation activity of PCL on patterned substrates. Chinese J. Polym. Sci. 2019, 37, 693−699.  doi: 10.1007/s10118-019-2226-z

    49. [49]

      Okihara, T.; Tsuji, M.; Kawaguchi, A.; Katayama, K. I.; Tsuji, H.; Hyon, S. H.; Ikada, Y. Crystal structure of stereocomplex of poly(L-lactide) and poly(D-lactide). J. Macromol. Sci. Part B 1991, 30, 119−140.  doi: 10.1080/00222349108245788

    50. [50]

      Ihn, K. J.; Yoo, E. S.; Im, S. S. Structure and morphology of poly(tetramethylene succinate) crystals. Macromolecules 1995, 28, 2460−2464.  doi: 10.1021/ma00111a045

    51. [51]

      Bittiger, H.; Marchessault, R. H.; Niegisch, W. D. Crystal structure of poly-ε-caprolactone. Acta Cryst. B 1970, 26, 1923−1927.  doi: 10.1107/S0567740870005198

    52. [52]

      Takahashi, Y.; Tadokoro, H. Structural studies of polyethers, (-(CH2)m-O-)n. X. Crystal structure of poly(ethylene oxide). Macromolecules 1973, 6, 672−675.  doi: 10.1021/ma60035a005

    53. [53]

      Zhang, J. M.; Duan, Y. X.; Sato, H.; Tsuji, H.; Noda, I.; Yan, S.; Ozaki, Y. Crystal modifications and thermal behavior of poly(L-lactic acid) revealed by infrared spectroscopy. Macromolecules 2005, 38, 8012−8021.  doi: 10.1021/ma051232r

    54. [54]

      Michell, R. M.; Müller, A. J.; Spasova, M.; Dubois, P.; Burattini, S.; Greenland, B. W.; Hamley, I. W.; Hermida-Merino, D.; Cheval, N.; Fahmi, A. Crystallization and stereocomplexation behavior of poly(D- and L-lactide)-b-poly(N,N-dimethylamino-2-ethyl methacrylate) block copolymers. J. Polym. Sci., Part B: Polym. Phys. 2011, 49, 1397−1409.  doi: 10.1002/polb.22323

    55. [55]

      Sarasua, J. R.; Prud'homme, R. E.; Wisniewski, M.; Le Borgne, A.; Spassky, N. Crystallization and melting behavior of polylactides. Macromolecules 1998, 31, 3895−3905.  doi: 10.1021/ma971545p

    56. [56]

      Di Lorenzo, M. L. Calorimetric analysis of the multiple melting behavior of poly(L-lactic acid). J. Appl. Polym. Sci. 2006, 100, 3145−3151.  doi: 10.1002/app.23136

  • 加载中
    1. [1]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    2. [2]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    3. [3]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    4. [4]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    5. [5]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    6. [6]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    7. [7]

      Haibo YeQianyu LiJuan LiDidi LiZhimin Ao . Review on the abiotic degradation of biodegradable plastic poly(butylene adipate-terephthalate): Mechanisms and main factors of the degradation. Chinese Chemical Letters, 2025, 36(1): 109861-. doi: 10.1016/j.cclet.2024.109861

    8. [8]

      Yaxuan Jin Chao Zhang Guigang Zhang . Atomically dispersed low-valent Au on poly(heptazine imide) boosts photocatalytic hydroxyl radical production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100414-100414. doi: 10.1016/j.cjsc.2024.100414

    9. [9]

      Shuxin LiuJinjuan MaAiguo WangNan Zheng . Decomposable and sono-enzyme co-triggered poly(sonosensitizers) for precise and hypotoxic sonodynamic therapy. Chinese Chemical Letters, 2025, 36(4): 110032-. doi: 10.1016/j.cclet.2024.110032

    10. [10]

      Xue ZhaoRui ZhaoQian LiuHenghui ChenJing WangYongfeng HuYan LiQiuming PengJohn S Tse . A p-d block synergistic effect enables robust electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(11): 109496-. doi: 10.1016/j.cclet.2024.109496

    11. [11]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    12. [12]

      Tong TongLezong ChenSiying WuZhong CaoYuanbin SongJun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689

    13. [13]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    14. [14]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    15. [15]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    16. [16]

      Yuan LiuBoyang WangYaxin LiWeidong LiSiyu Lu . Understanding excitonic behavior and electroluminescence light emitting diode application of carbon dots. Chinese Chemical Letters, 2025, 36(2): 110426-. doi: 10.1016/j.cclet.2024.110426

    17. [17]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    18. [18]

      Yukun Xing Xiaoyu Xie Fangfang Chen . A Sunlit Gift: Vitamin D. University Chemistry, 2024, 39(9): 28-34. doi: 10.12461/PKU.DXHX202402006

    19. [19]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    20. [20]

      Kaili WangPengcheng LiuMingzhe WangTianran WeiJitao LuXingling ZhaoZaiyong JiangZhimin YuanXijun LiuJia He . Modulating d-d orbitals coupling in PtPdCu medium-entropy alloy aerogels to boost pH-general methanol electrooxidation performance. Chinese Chemical Letters, 2025, 36(4): 110532-. doi: 10.1016/j.cclet.2024.110532

Metrics
  • PDF Downloads(0)
  • Abstract views(867)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return