The Crystallization and Melting Behaviors of PDLA-b-PBS-b-PDLA Tri-block Copolymers
- Corresponding author: Jun Shao, jun.shao@jxnu.edu.cn Hao-Qing Hou, hhq2001911@126.com
Citation:
Cong-Shu Feng, Yun Chen, Jun Shao, Gao Li, Hao-Qing Hou. The Crystallization and Melting Behaviors of PDLA-b-PBS-b-PDLA Tri-block Copolymers[J]. Chinese Journal of Polymer Science,
;2020, 38(3): 298-310.
doi:
10.1007/s10118-020-2361-6
Madhavan Nampoothiri, K.; Nair, N. R.; John, R. P. An overview of the recent developments in polylactide (PLA) research. Bioresource Technol. 2010, 101, 8493−8501.
doi: 10.1016/j.biortech.2010.05.092
Inkinen, S.; Hakkarainen, M.; Albertsson, A. C.; Södergård, A. From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors. Biomacromolecules 2011, 12, 523−532.
doi: 10.1021/bm101302t
Jem, K. J.; van der Pol, J.; de Vos, S. Microbial lactic acid, its polymer poly(lactic acid), and their industrial applications. In Plastics from Bacteria, Ed. by Chen, G. G. Q. Springer Berlin Heidelberg, 2010, Vol. 14, pp. 323−346.
Pang, X.; Zhuang, X.; Tang, Z.; Chen, X. Polylactic acid (PLA): research, development and industrialization. Biotechnol. J. 2010, 5, 1125−1136.
doi: 10.1002/biot.201000135
Saeidlou, S.; Huneault, M. A.; Li, H.; Park, C. B. Poly(lactic acid) crystallization. Prog. Polym. Sci. 2012, 37, 1657−1677.
doi: 10.1016/j.progpolymsci.2012.07.005
Xu, J.; Guo, B. H. Poly(butylene succinate) and its copolymers: research, development and industrialization. Biotechnol. J. 2010, 5, 1149−1163.
doi: 10.1002/biot.201000136
Gigli, M.; Fabbri, M.; Lotti, N.; Gamberini, R.; Rimini, B.; Munari, A. Poly(butylene succinate)-based polyesters for biomedical applications: a review. Eur. Polym. J. 2016, 75, 431−460.
doi: 10.1016/j.eurpolymj.2016.01.016
Deng, Y.; Thomas, N. L. Blending poly(butylene succinate) with poly(lactic acid): ductility and phase inversion effects. Eur. Polym. J. 2015, 71, 534−546.
doi: 10.1016/j.eurpolymj.2015.08.029
Wuk, P. J.; Soon, I. S. Phase behavior and morphology in blends of poly(L-lactic acid) and poly(butylene succinate). J. Appl. Polym. Sci. 2002, 86, 647−655.
doi: 10.1002/app.10923
Wu, D.; Yuan, L.; Laredo, E.; Zhang, M.; Zhou, W. Interfacial properties, viscoelasticity, and thermal behaviors of poly(butylene succinate)/polylactide blend. Ind. Eng. Chem. Res. 2012, 51, 2290−2298.
doi: 10.1021/ie2022288
Yokohara, T.; Yamaguchi, M. Structure and properties for biomass-based polyester blends of PLA and PBS. Eur. Polym. J. 2008, 44, 677−685.
doi: 10.1016/j.eurpolymj.2008.01.008
Stoyanova, N.; Paneva, D.; Mincheva, R.; Toncheva, A.; Manolova, N.; Dubois, P.; Rashkov, I. Poly(L-lactide) and poly(butylene succinate) immiscible blends: from electrospinning to biologically active materials. Mater. Sci. Eng. C 2014, 41, 119−126.
doi: 10.1016/j.msec.2014.04.043
Olivier, P.; Robert, Q.; Yahia, L.; John, S.; Stuart, M.; Leïla, B.; Philippe, D. Reactive compatibilization of poly(L-lactide)/poly(butylene succinate) blends through polyester maleation: From materials to properties. Polym. Int. 2014, 63, 1724−1731.
doi: 10.1002/pi.4700
Chen, G. X.; Kim, H. S.; Kim, E. S.; Yoon, J. S. Compatibilization-like effect of reactive organoclay on the poly(L-lactide)/poly(butylene succinate) blends. Polymer 2005, 46, 11829−11836.
doi: 10.1016/j.polymer.2005.10.056
Tadashi, Y.; Kenzo, O.; Masayuki, Y. Effect of the shape of dispersed particles on the thermal and mechanical properties of biomass polymer blends composed of poly(L-lactide) and poly(butylene succinate). J. Appl. Polym. Sci. 2010, 117, 2226−2232.
doi: 10.1002/app.31959
Zhang, X.; Zhang, Y. Reinforcement effect of poly(butylene succinate) (PBS)-grafted cellulose nanocrystal on toughened PBS/polylactic acid blends. Carbohyd. Polym. 2016, 140, 374−382.
doi: 10.1016/j.carbpol.2015.12.073
Masaki, H.; Tsubasa, O.; Kouji, I.; Hideki, H.; Koji, H.; Hiroyuki, F. Increased impact strength of biodegradable poly(lactic acid)/poly(butylene succinate) blend composites by using isocyanate as a reactive processing agent. J. Appl. Polym. Sci. 2007, 106, 1813−1820.
doi: 10.1002/app.26717
Zhang, B.; Bian, X.; Xiang, S.; Li, G.; Chen, X. Synthesis of PLLA-based block copolymers for improving melt strength and toughness of PLLA by in situ reactive blending. Polym. Degrad. Stab. 2017, 136, 58−70.
doi: 10.1016/j.polymdegradstab.2016.11.022
Valerio, O.; Misra, M.; Mohanty, A. K. Statistical design of sustainable thermoplastic blends of poly(glycerol succinate-co-maleate) (PGSMA), poly(lactic acid) (PLA) and poly(butylene succinate) (PBS). Polym. Test. 2018, 65, 420−428.
doi: 10.1016/j.polymertesting.2017.12.018
Supthanyakul, R.; Kaabbuathong, N.; Chirachanchai, S. Poly(L-lactide-b-butylene succinate-b-L-lactide) triblock copolymer: a multi-functional additive for PLA/PBS blend with a key performance on film clarity. Polym. Degrad. Stab. 2017, 142, 160−168.
doi: 10.1016/j.polymdegradstab.2017.05.029
Supthanyakul, R.; Kaabbuathong, N.; Chirachanchai, S. Random poly(butylene succinate-co-lactic acid) as a multi-functional additive for miscibility, toughness, and clarity of PLA/PBS blends. Polymer 2016, 105, 1−9.
doi: 10.1016/j.polymer.2016.10.006
Liu, Y.; Shao, J.; Sun, J.; Bian, X.; Chen, Z.; Li, G.; Chen, X. Toughening effect of poly(D-lactide)-b-poly(butylene succinate)-b-poly(D-lactide) copolymers on poly(L-lactic acid) by solution casting method. Mater. Lett. 2015, 155, 94−96.
doi: 10.1016/j.matlet.2015.04.124
Kawai, T.; Rahman, N.; Matsuba, G.; Nishida, K.; Kanaya, T.; Nakano, M.; Okamoto, H.; Kawada, J.; Usuki, A.; Honma, N. Crystallization and melting behavior of poly(L-lactic acid). Macromolecules 2007, 40, 9463−9469.
doi: 10.1021/ma070082c
Li, S. Non-isothermal crystallization kinetics of poly(L-lactide). Polym. Int. 2010, 59, 1616.
doi: 10.1002/pi.2894
Xiang, S.; Jun, S.; Li, G.; Bian, X. C.; Feng, L. D.; Chen, X. S.; Liu, F. Q.; Huang, S. Y. Effects of molecular weight on the crystallization and melting behaviors of poly(L-lactide). Chinese J. Polym. Sci. 2016, 34, 69−76.
doi: 10.1007/s10118-016-1727-2
Liu, X. Q.; Li, C. C.; Zhang, D.; Xiao, Y. N. Melting behaviors, crystallization kinetics, and spherulitic morphologies of poly(butylene succinate) and its copolyester modified with rosin maleopimaric acid anhydride. J. Polym. Sci., Part B: Polym. Phys. 2006, 44, 900−913.
Gan, Z.; Abe, H.; Kurokawa, H.; Doi, Y. Solid-state microstructures, thermal properties, and crystallization of biodegradable poly(butylene succinate) (PBS) and its copolyesters. Biomacromolecules 2001, 2, 605−613.
doi: 10.1021/bm015535e
Park, J. W.; Kim, D. K.; Im, S. S. Crystallization behaviour of poly(butylene succinate) copolymers. Polym. Int. 2002, 51, 239−244.
doi: 10.1002/pi.848
Park, S. B.; Hwang, S. Y.; Moon, C. W.; Im, S. S.; Yoo, E. S. Plasticizer effect of novel PBS ionomer in PLA/PBS ionomer blends. Macromol. Res. 2010, 18, 463−471.
doi: 10.1007/s13233-010-0512-2
Pivsa-Art, W.; Fujii, K.; Nomura, K.; Aso, Y.; Ohara, H.; Yamane, H. Isothermal crystallization kinetics of talc-filled poly(lactic acid) and poly(butylene succinate) blends. J. Polym. Res. 2016, 23, 144.
doi: 10.1007/s10965-016-1045-y
Ba, C.; Yang, J.; Hao, Q.; Liu, X.; Cao, A. Syntheses and physical characterization of new aliphatic triblock poly(L-lactide-b-butylene succinate-b-L-lactide)s bearing soft and hard biodegradable building blocks. Biomacromolecules 2003, 4, 1827−1834.
doi: 10.1021/bm034235p
Lan, X.; Li, X.; Liu, Z.; He, Z.; Yang, W.; Yang, M. Composition, morphology and properties of poly(lactic acid) and poly(butylene succinate) copolymer system via coupling reaction. J. Macromol. Sci. 2013, 50, 861−870.
doi: 10.1080/10601325.2013.802196
Lin, J.; Yin, L. Z.; Li, Y.; Li, Q. B.; Yang, J.; Yu, J. Y.; Shi, Z.; Fang, Q.; Cao, A. New enantiomeric polylactide-block-poly(butylene succinate)-block-polylactides: syntheses, characterization and in situ self-assembly. Macromol. Biosci. 2005, 5, 526−538.
doi: 10.1002/mabi.200400227
Zeng, J. B.; Li, Y. D.; Zhu, Q. Y.; Yang, K. K.; Wang, X. L.; Wang, Y. Z. A novel biodegradable multiblock poly(ester urethane) containing poly(L-lactic acid) and poly(butylene succinate) blocks. Polymer 2009, 50, 1178−1186.
doi: 10.1016/j.polymer.2009.01.001
Müller, A. J.; Balsamo, V.; Arnal, M. L. Nucleation and crystallization in diblock and triblock copolymers. In Block copolymers II, Abetz, V., 1st Ed. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005, pp. 1−63.
Castillo, R. V.; Müller, A. J.; Raquez, J. M.; Dubois, P. Crystallization kinetics and morphology of biodegradable double crystalline PLLA-b-PCL diblock copolymers. Macromolecules 2010, 43, 4149−4160.
doi: 10.1021/ma100201g
Castillo, R. V.; Müller, A. J. Crystallization and morphology of biodegradable or biostable single and double crystalline block copolymers. Prog. Polym. Sci. 2009, 34, 516−560.
doi: 10.1016/j.progpolymsci.2009.03.002
Zhou, D.; Shao, J.; Li, G.; Sun, J.; Bian, X.; Chen, X. Crystallization behavior of PEG/PLLA block copolymers: effect of the different architectures and molecular weights. Polymer 2015, 62, 70−76.
doi: 10.1016/j.polymer.2015.02.019
Chen, C. H.; Peng, J. S.; Chen, M.; Lu, H. Y.; Tsai, C. J.; Yang, C. S. Synthesis and characterization of poly(butylene succinate) and its copolyesters containing minor amounts of propylene succinate. Colloid Polym. Sci. 2010, 288, 731−738.
doi: 10.1007/s00396-010-2187-9
Shao, J.; Tang, Z. H.; Sun, J. R.; Li, G.; Chen, X. S. Linear and four-armed poly(L-lactide)-block-poly(D-lactide) copolymers and their stereocomplexation with poly(lactide)s. J. Polym. Sci., Part B: Polym. Phys. 2014, 52, 1560−1567.
Avrami, M. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J. Chem. Phys. 1940, 8, 212−224.
doi: 10.1063/1.1750631
Avrami, M. Kinetics of phase change. I. General theory. J. Chem. Phys. 1939, 7, 1103−1112.
doi: 10.1063/1.1750380
Yin, H. Y.; Wei, X. F.; Bao, R. Y.; Dong, Q. X.; Liu, Z. Y.; Yang, W.; Xie, B. H.; Yang, M. B. High-melting-point crystals of poly(L-lactic acid) (PLLA): the most efficient nucleating agent to enhance the crystallization of PLLA. CrystEngComm 2015, 17, 2310−2320.
doi: 10.1039/C4CE02497D
Huang, C. I.; Tsai, S. H.; Chen, C. M. Isothermal crystallization behavior of poly(L-lactide) in poly(L-lactide)-block-poly(ethylene glycol) diblock copolymers. J. Polym. Sci., Part B: Polym. Phys. 2006, 44, 2438−2448.
doi: 10.1002/polb.20890
Yang, J.; Zhao, T.; Liu, L.; Zhou, Y.; Li, G.; Zhou, E.; Chen, X. Isothermal crystallization behavior of the poly(L-lactide) block in poly(L-lactide)-poly(ethylene glycol) diblock copolymers: influence of the PEG block as a diluted solvent. Polym. J. 2006, 38, 1251−1257.
doi: 10.1295/polymj.PJ2006094
Yang, J.; Zhao, T.; Cui, J.; Liu, L.; Zhou, Y.; Li, G.; Zhou, E.; Chen, X. Nonisothermal crystallization behavior of the poly(ethylene glycol) block in poly(L-lactide)-poly(ethylene glycol) diblock copolymers: Effect of the poly(L-lactide) block length. J. Polym. Sci., Part B: Polym. Phys. 2006, 44, 3215−3226.
doi: 10.1002/polb.20886
Hamley, I. W.; Castelletto, V.; Castillo, R. V.; Müller, A. J.; Martin, C. M.; Pollet, E.; Dubois, P. Crystallization in poly(L-lactide)-b-poly(ε-caprolactone) double crystalline diblock copolymers: a study using X-ray scattering, differential scanning calorimetry, and polarized optical microscopy. Macromolecules 2005, 38, 463−472.
doi: 10.1021/ma0481499
Hu, J.; Xin, R.; Hou, C. Y.; Yan, S. K.; Liu, J. C. Direct comparison of crystal nucleation activity of PCL on patterned substrates. Chinese J. Polym. Sci. 2019, 37, 693−699.
doi: 10.1007/s10118-019-2226-z
Okihara, T.; Tsuji, M.; Kawaguchi, A.; Katayama, K. I.; Tsuji, H.; Hyon, S. H.; Ikada, Y. Crystal structure of stereocomplex of poly(L-lactide) and poly(D-lactide). J. Macromol. Sci. Part B 1991, 30, 119−140.
doi: 10.1080/00222349108245788
Ihn, K. J.; Yoo, E. S.; Im, S. S. Structure and morphology of poly(tetramethylene succinate) crystals. Macromolecules 1995, 28, 2460−2464.
doi: 10.1021/ma00111a045
Bittiger, H.; Marchessault, R. H.; Niegisch, W. D. Crystal structure of poly-ε-caprolactone. Acta Cryst. B 1970, 26, 1923−1927.
doi: 10.1107/S0567740870005198
Takahashi, Y.; Tadokoro, H. Structural studies of polyethers, (-(CH2)m-O-)n. X. Crystal structure of poly(ethylene oxide). Macromolecules 1973, 6, 672−675.
doi: 10.1021/ma60035a005
Zhang, J. M.; Duan, Y. X.; Sato, H.; Tsuji, H.; Noda, I.; Yan, S.; Ozaki, Y. Crystal modifications and thermal behavior of poly(L-lactic acid) revealed by infrared spectroscopy. Macromolecules 2005, 38, 8012−8021.
doi: 10.1021/ma051232r
Michell, R. M.; Müller, A. J.; Spasova, M.; Dubois, P.; Burattini, S.; Greenland, B. W.; Hamley, I. W.; Hermida-Merino, D.; Cheval, N.; Fahmi, A. Crystallization and stereocomplexation behavior of poly(D- and L-lactide)-b-poly(N,N-dimethylamino-2-ethyl methacrylate) block copolymers. J. Polym. Sci., Part B: Polym. Phys. 2011, 49, 1397−1409.
doi: 10.1002/polb.22323
Sarasua, J. R.; Prud'homme, R. E.; Wisniewski, M.; Le Borgne, A.; Spassky, N. Crystallization and melting behavior of polylactides. Macromolecules 1998, 31, 3895−3905.
doi: 10.1021/ma971545p
Di Lorenzo, M. L. Calorimetric analysis of the multiple melting behavior of poly(L-lactic acid). J. Appl. Polym. Sci. 2006, 100, 3145−3151.
doi: 10.1002/app.23136
Haojie Song , Laiyu Luo , Siyu Wang , Guo Zhang , Baojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347
Xinyu Liu , Jialin Yang , Zonglin He , Jiaoyan Ai , Lina Song , Baohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236
Chong Liu , Ling Li , Jiahui Gao , Yanwei Li , Nazhen Zhang , Jing Zang , Cong Liu , Zhaopei Guo , Yanhui Li , Huayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118
Weijian Zhang , Xianyu Deng , Liying Wang , Jian Wang , Xiuting Guo , Lianggui Huang , Xinyi Wang , Jun Wu , Linjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422
Chen Lian , Si-Han Zhao , Hai-Lou Li , Xinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343
Mengyuan Li , Xitong Ren , Yanmei Gao , Mengyao Mu , Shiping Zhu , Shufang Tian , Minghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699
Haibo Ye , Qianyu Li , Juan Li , Didi Li , Zhimin Ao . Review on the abiotic degradation of biodegradable plastic poly(butylene adipate-terephthalate): Mechanisms and main factors of the degradation. Chinese Chemical Letters, 2025, 36(1): 109861-. doi: 10.1016/j.cclet.2024.109861
Yaxuan Jin , Chao Zhang , Guigang Zhang . Atomically dispersed low-valent Au on poly(heptazine imide) boosts photocatalytic hydroxyl radical production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100414-100414. doi: 10.1016/j.cjsc.2024.100414
Shuxin Liu , Jinjuan Ma , Aiguo Wang , Nan Zheng . Decomposable and sono-enzyme co-triggered poly(sonosensitizers) for precise and hypotoxic sonodynamic therapy. Chinese Chemical Letters, 2025, 36(4): 110032-. doi: 10.1016/j.cclet.2024.110032
Xue Zhao , Rui Zhao , Qian Liu , Henghui Chen , Jing Wang , Yongfeng Hu , Yan Li , Qiuming Peng , John S Tse . A p-d block synergistic effect enables robust electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(11): 109496-. doi: 10.1016/j.cclet.2024.109496
Zhili Li , Qijun Wo , Dongdong Huang , Dezhong Zhou , Lei Guo , Yeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737
Tong Tong , Lezong Chen , Siying Wu , Zhong Cao , Yuanbin Song , Jun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689
Zhenchun Yang , Bixiao Guo , Zhenyu Hu , Kun Wang , Jiahao Cui , Lina Li , Chun Hu , Yubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251
Jun Lu , Jinrui Yan , Yaohao Guo , Junjie Qiu , Shuangliang Zhao , Bo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876
Jiakun Bai , Junhui Jia , Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323
Yuan Liu , Boyang Wang , Yaxin Li , Weidong Li , Siyu Lu . Understanding excitonic behavior and electroluminescence light emitting diode application of carbon dots. Chinese Chemical Letters, 2025, 36(2): 110426-. doi: 10.1016/j.cclet.2024.110426
Liyong Ding , Zhenhua Pan , Qian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125
Yukun Xing , Xiaoyu Xie , Fangfang Chen . A Sunlit Gift: Vitamin D. University Chemistry, 2024, 39(9): 28-34. doi: 10.12461/PKU.DXHX202402006
Yuexi Guo , Zhaoyang Li , Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067
Kaili Wang , Pengcheng Liu , Mingzhe Wang , Tianran Wei , Jitao Lu , Xingling Zhao , Zaiyong Jiang , Zhimin Yuan , Xijun Liu , Jia He . Modulating d-d orbitals coupling in PtPdCu medium-entropy alloy aerogels to boost pH-general methanol electrooxidation performance. Chinese Chemical Letters, 2025, 36(4): 110532-. doi: 10.1016/j.cclet.2024.110532